簡易檢索 / 詳目顯示

研究生: 曾彥誠
Tseng, Yen-Cheng
論文名稱: 阻斷IL-33和ST2L的中和抗體能增加肺癌中抗腫瘤免疫反應
Blockage of IL-33 and ST2L by neutralizing antibodies increases anti-tumor immune responses in lung cancer
指導教授: 張志鵬
Chang, Chih-Peng
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 89
中文關鍵詞: 肺癌順鉑介白素33第二穿膜型抑制致瘤性受體腫瘤微環境
外文關鍵詞: Lung cancer, Cisplatin, Interleukin-33, Transmembrane form suppression of tumorigenicity-2, Antibody drug, Tumor microenvironment
相關次數: 點閱:105下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肺癌是目前世界上最常見且致死率高的癌症。在治療上,化療藥物誘導肺癌患者腫瘤免疫逃脫,是臨床上新出現的一個問題。因此,發展出針對腫瘤免疫逃脫的治療策略,對於肺癌治療至關重要。介白素33 (interleukin-33)是在腫瘤微環境中被發現的細胞激素,且能與第二穿膜型抑制致瘤性受體 (transmembrane form suppression of tumorigenicity-2, ST2L)專一性的結合。IL-33/ST2L訊息傳遞已被報導,會透過抑制腫瘤微環境中的抗腫瘤免疫反應,來促進肺癌的進展。阻斷IL-33和ST2L之間的交互作用可能有益於治療肺癌。在本研究中,我們透過與偉喬生技公司的合作,針對IL-33和ST2L生產了老鼠的中和性單株抗體。我們發現雖然這些中和抗體並不會影響肺癌細胞 (Lewis lung carcinoma, LLC)在體外的生長與死亡,但這些抗體可以顯著減緩小鼠中LLC腫瘤的生長。值得注意的是,透過組織免疫螢光染色的實驗可以發現,在抗體治療過的LLC腫瘤中,CD8+ T細胞浸潤到腫瘤內的數量增加,而Foxp3+調節T細胞(Treg)和M2型巨噬細胞的浸潤則相對減少,且PD-L1在腫瘤中的表現量也因為抗體的治療而降低。另外,由體外細胞培養實驗也顯示,利用中和性抗體阻斷IL-33和ST2L的訊息,能夠分別抑制Foxp3+ 調節T細胞和M2型巨噬細胞從初始T細胞和骨髓衍生巨噬細胞的分化,且同樣能減少PD-L1在肺癌細胞上的表現。這些結果與在抗體治療LCC腫瘤小鼠身上所發現的現象一致。順鉑(cisplatin)是治療晚期肺癌患者的一線化療用藥,有趣的是,我們發現由細胞壞死所釋放的IL-33,在經過順鉑處理的肺癌細胞及帶有LCC腫瘤小鼠中都增加了。給予IL-33和ST2L中和性抗體後,能夠增強LCC腫瘤小鼠中CD8+ T細胞活性,以及提升順鉑的抗腫瘤功效。綜合上述,我們證實利用自家生產的單株抗體來阻斷IL-33 / ST2L訊息傳遞,能增加肺癌中抗腫瘤免疫反應。靶向IL-33 / ST2L軸能作為肺癌治療中,減輕因化療藥物所引起腫瘤免疫逃脫的新策略。

    Lung cancer is the first common and the leading cause of cancer-related mortality around the world. In clinical, chemotherapeutics-mediated tumor immunoevasion is an emerging problem to reduce the therapeutic efficacy in lung cancer patients. Thus, development of a promising therapeutic strategy against immunoevasion is critical for lung cancer therapy. Interleukin-33 (IL-33) is one of the cytokines found in the tumor microenvironment (TME) and can specifically bind with transmembrane form suppression of tumorigenicity-2 (ST2L). IL-33/ST2L signaling has been revealed to facilitate lung cancer progression partly through suppressing anti-tumor immunity in the TME. Blocking the interaction between IL-33 and ST2L may be beneficial for treating lung cancer. Here, we cooperated with Leadgene Biomedical, Inc. to generate mouse monoclonal antibodies against IL-33 and ST2L. We found that neutralizing antibodies against IL-33 and ST2L do not cause Lewis lung carcinoma (LLC) cell growth inhibition and death directly, but administration of these antibodies can significantly attenuate LLC tumor growth in mice. Notably, increased infiltration of CD8+ T cells while decreased infiltration of Foxp3+ Tregs and M2 macrophages, as well as reduced PD-L1-expressing LLC cells, were noticed in antibodies-treated LLC tumors by tissue immunofluorescence staining. Consistent with these findings in LCC-bearing mice, our data showed that blockage of IL-33/ST2L signaling by neutralizing antibodies is able to inhibit differentiation of Foxp3+ Tregs and M2 macrophages from naive T cells and bone marrow-derived macrophages, respectively, and can also reduce PD-L1 expression in LLC cells. Cisplatin is one of the first-line chemotherapy drug for advanced lung cancer patients. Interestingly, we demonstrated that the necrotic release of IL-33 was increased in both cisplatin-treated LLC cells and LLC-bearing mice. Treatment of neutralizing antibodies against IL-33 and ST2L is able to enhance CD8+ T cell activity as well as anti-tumor efficacy of cisplatin in LLC-bearing mice. All above, our findings suggest that blockage of IL-33/ST2L by our in-house-generated monoclonal antibodies can increase anti-tumor immunity against lung cancer. Targeting IL-33/ST2L axis may serve as a novel strategy to reduce chemotherapy-mediated tumor immunoevasion in lung cancer therapy.

    中文摘要 I Abstract III Acknowledgement V Table of Contents VI Abbreviations IX I. Introduction 1 1. Lung cancer 1 1.1 Etiology of lung cancer 1 1.1.1 Tobacco smoking 1 1.1.2 Occupational and environmental exposures 2 1.1.3 Genetic factors 3 1.2 Histological classification of lung cancer 4 1.2.1 Small cell lung cancer (SCLC) 4 1.2.2 Non-small cell lung cancer (NSCLC) 5 1.3 Treatment of lung cancer 5 1.3.1 Chemotherapy-mediated immunoevasion 6 1.3.2 Cisplatin 7 2. Tumor microenvironment and immunosuppression 7 2.1 M2 macrophages 8 2.2 Regulatory T cells 8 2.3 Myeloid-derived suppressor cells 9 3. IL-33 and ST2L signaling 10 3.1 IL-33 and ST2L 10 3.2 IL-33/ST2L signals in lung tumorigenesis 11 II. Objective and Specific Aims 13 III. Materials and Methods 14 1. Materials 14 1.1 Animal 14 1.2 Cell culture 14 1.3 Antibodies 15 1.4 Specific primer sequences 18 1.5 Reagents 18 2. Methods 24 2.1 LLC-bearing mouse model 24 2.2 Flow cytometry 24 2.3 Primary splenocyte isolation and Foxp3+ regulatory T cell (Treg) differentiation assay 25 2.4 Primary BMDM isolation and M2 macrophages polarization assay 26 2.5 Cellular RNA extraction, RT-PCR and qPCR analysis 26 2.6 Western blotting 26 2.7 Enzyme-linked immunosorbent assay (ELISA) 27 2.8 Lactate dehydrogenase (LDH) releasing assay 27 2.9 WST-1 assay 27 2.10 Antibody neutralization assay 28 2.11 IL-33-mediated NF-κB activation assay 28 2.12 Hematoxylin and eosin (H&E) histopathological staining. 29 2.13 Immunofluorescence assay (IFA) 29 2.14 Immunohistochemistry assay (IHC) 29 2.15 Statistical analysis 30 IV. Results 31 1. Increased expression of IL-33 and ST2L is observed in mouse lung tumors. 31 2. Monoclonal α-IL-33 and α-ST2L antibodies can block the binding and signaling of IL-33. 31 3. Blockage of IL-33/ST2L signaling by neutralizing antibodies inhibits LLC tumor growth in mice. 32 4. Blockage of IL-33/ST2L signaling by neutralizing antibodies reduces immunosuppressive responses in TME. 33 5. Blockage of IL-33/ST2L signaling by neutralizing antibodies inhibits IL-33-induced Foxp3+Treg and M2 macrophage polarization. 34 6. IL-33 and ST2L are up-regulated in cisplatin-treated LLC cells and tumors. 35 7. Blockage of IL-33/ST2L signaling by neutralizing antibodies enhances anti-tumor efficacy of cisplatin. 35 V. Conclusions 37 VI. Discussion 38 Blockage of IL-33/ST2L signaling promotes both anti-tumor immune response and tumor growth inhibition. 38 Blockage of IL-33/ST2L signaling does not show a beneficial effect on lung tumor metastasis. 39 The source of IL-33 in TME. 40 Intrinsic IL-33 may be critical for macrophage phenotype programming. 41 Cisplatin treatment upregulates the mRNA expression and necrotic release of IL-33 in LLC cells and tumors. 42 Our in-house generated monoclonal α-IL-33 and α-ST2L antibodies are potential to improve chemotherapeutic-induced tumor immunoevasion. 43 VII. References 45 VIII. Figures 60 Figure 1. The expression of IL-33 and ST2L is increased in LLC tumors. 61 Figure 2. The growth of LLC tumors is attenuated in IL-33-/- mice. 62 Figure 3. Monoclonal α-IL-33 and α-ST2L antibodies can block binding and signaling of IL-33. 64 Figure 4. Monoclonal α-IL-33 and α-ST2L antibodies do not cause LLC cell growth inhibition and cell death. 67 Figure 5. Monoclonal α-IL-33 and α-ST2L antibodies do not cause significant toxicity in mice. 69 Figure 6. Blockage of IL-33/ST2L by monoclonal α-IL-33 and α-ST2L antibodies suppresses LLC tumor growth. 70 Figure 7. Blockage of IL-33/ST2L by monoclonal α-IL-33 and α-ST2L antibodies is not able to inhibit metastasis of LLC. 71 Figure 8. Blockage of IL-33/ST2L by monoclonal α-IL-33 and α-ST2L antibodies reduces immunosuppressive response in the TME. 74 Figure 9. Blockage of IL-33/ST2L by monoclonal α-IL-33 and α-ST2L antibodies inhibits IL-33-induced PD-L1 expression on LLC cells and tumors. 76 Figure 10. Blockage of IL-33/ST2L by monoclonal α-IL-33 and α-ST2L antibodies inhibits IL-33-promoted CD4+Foxp3+ Tregs differentiation. 77 Figure 11. Blockage of IL-33/ST2L by monoclonal α-IL-33 and α-ST2L antibodies inhibits IL-33-promoted M2 macrophage polarization. 79 Figure 12. Cisplatin treatment promotes IL-33 and ST2L expression in LLC cells and tumors. 81 Figure 13. Blockage of IL-33/ST2L by monoclonal α-IL-33 and α-ST2L antibodies enhances the anti-tumor effect of cisplatin. 83 Figure 15. Blockage of IL-33/ST2L by monoclonal α-IL-33 and α-ST2L antibodies suppresses lung tumor growth via promoting anti-tumor immune response in the TME. 87 IX. Appendix 88 Appendix 1. IL-33 involves in IFN-γ and IL-13-mediated macrophage polarization. 88 Appendix 2. Cisplatin treatment causes LDH release from LLC cells. 89

    Aisner, J., and Abrams, J. (1989). Cisplatin for small-cell lung cancer. Semin Oncol 16, 2-9.

    Aktas, E., Kucuksezer, U.C., Bilgic, S., Erten, G., and Deniz, G. (2009). Relationship between CD107a expression and cytotoxic activity. Cell Immunol 254, 149-154.

    Andersson, P., Yang, Y., Hosaka, K., Zhang, Y., Fischer, C., Braun, H., Liu, S., Yu, G., Liu, S., Beyaert, R., et al. (2018). Molecular mechanisms of IL-33-mediated stromal interactions in cancer metastasis. JCI Insight 3.

    Atri, C., Guerfali, F.Z., and Laouini, D. (2018). Role of Human Macrophage Polarization in Inflammation during Infectious Diseases. Int J Mol Sci 19.

    Baghdadi, M., Wada, H., Nakanishi, S., Abe, H., Han, N., Putra, W.E., Endo, D., Watari, H., Sakuragi, N., Hida, Y., et al. (2016). Chemotherapy-Induced IL34 Enhances Immunosuppression by Tumor-Associated Macrophages and Mediates Survival of Chemoresistant Lung Cancer Cells. Cancer Res 76, 6030-6042.

    Bartsch, H., Petruzzelli, S., De Flora, S., Hietanen, E., Camus, A.M., Castegnaro, M., Alexandrov, K., Rojas, M., Saracci, R., and Giuntini, C. (1992). Carcinogen metabolism in human lung tissues and the effect of tobacco smoking: results from a case--control multicenter study on lung cancer patients. Environ Health Perspect 98, 119-124.

    Bates, G.J., Fox, S.B., Han, C., Leek, R.D., Garcia, J.F., Harris, A.L., and Banham, A.H. (2006). Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J Clin Oncol 24, 5373-5380.

    Bruchard, M., Mignot, G., Derangère, V., Chalmin, F., Chevriaux, A., Végran, F., Boireau, W., Simon, B., Ryffel, B., Connat, J.L., et al. (2013). Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nat Med 19, 57-64.


    Burkholder, B., Huang, R.Y., Burgess, R., Luo, S., Jones, V.S., Zhang, W., Lv, Z.Q., Gao, C.Y., Wang, B.L., Zhang, Y.M., et al. (2014). Tumor-induced perturbations of cytokines and immune cell networks. Biochim Biophys Acta 1845, 182-201.

    Cao, L., Che, X., Qiu, X., Li, Z., Yang, B., Wang, S., Hou, K., Fan, Y., Qu, X., and Liu, Y. (2019). M2 macrophage infiltration into tumor islets leads to poor prognosis in non-small-cell lung cancer. Cancer Manag Res 11, 6125-6138.

    Cao, X., Cai, S.F., Fehniger, T.A., Song, J., Collins, L.I., Piwnica-Worms, D.R., and Ley, T.J. (2007). Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance. Immunity 27, 635-646.

    Casciaro, M., Cardia, R., Di Salvo, E., Tuccari, G., Ieni, A., and Gangemi, S. (2019). Interleukin-33 Involvement in Nonsmall Cell Lung Carcinomas: An Update. Biomolecules 9.

    Cayrol, C., and Girard, J.P. (2014). IL-33: an alarmin cytokine with crucial roles in innate immunity, inflammation and allergy. Curr Opin Immunol 31, 31-37.

    Chan, F.K., Moriwaki, K., and De Rosa, M.J. (2013). Detection of necrosis by release of lactate dehydrogenase activity. Methods Mol Biol 979, 65-70.

    Cribbs, A.P., Kennedy, A., Penn, H., Amjadi, P., Green, P., Read, J.E., Brennan, F., Gregory, B., and Williams, R.O. (2015). Methotrexate Restores Regulatory T Cell Function Through Demethylation of the FoxP3 Upstream Enhancer in Patients With Rheumatoid Arthritis. Arthritis Rheumatol 67, 1182-1192.

    Dasari, S., and Tchounwou, P.B. (2014). Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol 740, 364-378.

    de Castria, T.B., da Silva, E.M., Gois, A.F., and Riera, R. (2013). Cisplatin versus carboplatin in combination with third-generation drugs for advanced non-small cell lung cancer. Cochrane Database Syst Rev, Cd009256.

    DeNardo, D.G., Brennan, D.J., Rexhepaj, E., Ruffell, B., Shiao, S.L., Madden, S.F., Gallagher, W.M., Wadhwani, N., Keil, S.D., Junaid, S.A., et al. (2011). Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov 1, 54-67.
    Doll, R., and Peto, R. (1981). The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today. J Natl Cancer Inst 66, 1191-1308.

    Eissmann, M.F., Dijkstra, C., Jarnicki, A., Phesse, T., Brunnberg, J., Poh, A.R., Etemadi, N., Tsantikos, E., Thiem, S., Huntington, N.D., et al. (2019). IL-33-mediated mast cell activation promotes gastric cancer through macrophage mobilization. Nat Commun 10, 2735.

    Fallarino, F., Grohmann, U., Hwang, K.W., Orabona, C., Vacca, C., Bianchi, R., Belladonna, M.L., Fioretti, M.C., Alegre, M.L., and Puccetti, P. (2003). Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol 4, 1206-1212.

    Feng, Z., Hu, W., Hu, Y., and Tang, M.S. (2006). Acrolein is a major cigarette-related lung cancer agent: Preferential binding at p53 mutational hotspots and inhibition of DNA repair. Proc Natl Acad Sci USA 103, 15404-15409.

    Ferlay, J., Shin, H.R., Bray, F., Forman, D., Mathers, C., and Parkin, D.M. (2010). Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127, 2893-2917.

    Field, R.W., and Withers, B.L. (2012). Occupational and environmental causes of lung cancer. Clin Chest Med 33, 681-703.

    Fujimura, T., Kambayashi, Y., and Aiba, S. (2012). Crosstalk between regulatory T cells (Tregs) and myeloid derived suppressor cells (MDSCs) during melanoma growth. Oncoimmunology 1, 1433-1434.

    Furrukh, M. (2013). Tobacco Smoking and Lung Cancer: Perception-changing facts. Sultan Qaboos Univ Med J 13, 345-358.

    Gabrilovich, D.I. (2017). Myeloid-Derived Suppressor Cells. Cancer Immunol Res 5, 3-8.

    Gabrilovich, D.I., Ostrand-Rosenberg, S., and Bronte, V. (2012). Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12, 253-268.


    George, J., Lim, J.S., Jang, S.J., Cun, Y., Ozretić, L., Kong, G., Leenders, F., Lu, X., Fernández-Cuesta, L., Bosco, G., et al. (2015). Comprehensive genomic profiles of small cell lung cancer. Nature 524, 47-53.

    Gondek, D.C., Lu, L.F., Quezada, S.A., Sakaguchi, S., and Noelle, R.J. (2005). Cutting edge: contact-mediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism. J Immunol 174, 1783-1786.
    Gonzalez, V.M., Fuertes, M.A., Alonso, C., and Perez, J.M. (2001). Is cisplatin-induced cell death always produced by apoptosis? Mol Pharmacol 59, 657-663.

    Greenblatt, M.S., Bennett, W.P., Hollstein, M., and Harris, C.C. (1994). Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 54, 4855-4878.

    Griesenauer, B., and Paczesny, S. (2017). The ST2/IL-33 Axis in Immune Cells during Inflammatory Diseases. Front Immunol 8, 475.

    Grossman, W.J., Verbsky, J.W., Tollefsen, B.L., Kemper, C., Atkinson, J.P., and Ley, T.J. (2004). Differential expression of granzymes A and B in human cytotoxic lymphocyte subsets and T regulatory cells. Blood 104, 2840-2848.

    Halvorsen, E.C., Franks, S.E., Wadsworth, B.J., Harbourne, B.T., Cederberg, R.A., Steer, C.A., Martinez-Gonzalez, I., Calder, J., Lockwood, W.W., and Bennewith, K.L. (2019). IL-33 increases ST2(+) Tregs and promotes metastatic tumour growth in the lungs in an amphiregulin-dependent manner. Oncoimmunology 8, e1527497.

    Hammerschmidt, S., and Wirtz, H. (2009). Lung cancer: current diagnosis and treatment. Dtsch Arztebl Int 106, 809-818; quiz 819-820.

    Han, Y., Guo, W., Ren, T., Huang, Y., Wang, S., Liu, K., Zheng, B., Yang, K., Zhang, H., and Liang, X. (2019). Tumor-associated macrophages promote lung metastasis and induce epithelial-mesenchymal transition in osteosarcoma by activating the COX-2/STAT3 axis. Cancer Lett 440-441, 116-125.

    Hao, N.B., Lü, M.H., Fan, Y.H., Cao, Y.L., Zhang, Z.R., and Yang, S.M. (2012). Macrophages in tumor microenvironments and the progression of tumors. Clin Dev Immunol 2012, 948098.

    Haraldsen, G., Balogh, J., Pollheimer, J., Sponheim, J., and Kuchler, A.M. (2009). Interleukin-33 - cytokine of dual function or novel alarmin? Trends Immunol 30, 227-233.

    Hatzioannou, A., Banos, A., Sakelaropoulos, T., Fedonidis, C., Vidali, M.S., Köhne, M., Händler, K., Boon, L., Henriques, A., Koliaraki, V., et al. (2020). An intrinsic role of IL-33 in T(reg) cell-mediated tumor immunoevasion. Nat Immunol 21, 75-85.

    Hecht, S.S. (1999). Tobacco smoke carcinogens and lung cancer. J Natl Cancer Inst 91, 1194-1210.

    Hecht, S.S. (2012). Lung carcinogenesis by tobacco smoke. Int J Cancer 131, 2724-2732.

    Hoffmann, D., and Hoffmann, I. (1997). The changing cigarette, 1950-1995. J Toxicol Environ Health 50, 307-364.

    Hong, J., Kim, S., and Lin, P.C. (2019). Interleukin-33 and ST2 Signaling in Tumor Microenvironment. J Interferon Cytokine Res 39, 61-71.

    Hosomi, Y., Yokose, T., Hirose, Y., Nakajima, R., Nagai, K., Nishiwaki, Y., and Ochiai, A. (2000). Increased cyclooxygenase 2 (COX-2) expression occurs frequently in precursor lesions of human adenocarcinoma of the lung. Lung Cancer 30, 73-81.

    Huang, C.I., Taki, T., Higashiyama, M., Kohno, N., and Miyake, M. (2000). p16 protein expression is associated with a poor prognosis in squamous cell carcinoma of the lung. Br J Cancer 82, 374-380.

    Huang, J.R., Tsai, Y.C., Chang, Y.J., Wu, J.C., Hung, J.T., Lin, K.H., Wong, C.H., and Yu, A.L. (2014). α-Galactosylceramide but not phenyl-glycolipids induced NKT cell anergy and IL-33-mediated myeloid-derived suppressor cell accumulation via upregulation of egr2/3. J Immunol 192, 1972-1981.

    Inamura, K. (2017). Lung Cancer: Understanding Its Molecular Pathology and the 2015 WHO Classification. Front Oncol 7, 193.


    Iyer, R.V., Maguire, O., Kim, M., Curtin, L.I., Sexton, S., Fisher, D.T., Schihl, S.A., Fetterly, G., Menne, S., and Minderman, H. (2019). Dose-Dependent Sorafenib-Induced Immunosuppression Is Associated with Aberrant NFAT Activation and Expression of PD-1 in T Cells. Cancers (Basel) 11.

    Jeong, H., Hwang, I., Kang, S.H., Shin, H.C., and Kwon, S.Y. (2019). Tumor-Associated Macrophages as Potential Prognostic Biomarkers of Invasive Breast Cancer. J Breast Cancer 22, 38-51.

    Jiang, X., Wang, J., Deng, X., Xiong, F., Ge, J., Xiang, B., Wu, X., Ma, J., Zhou, M., Li, X., et al. (2019). Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol Cancer 18, 10.

    Jones, G.S., and Baldwin, D.R. (2018). Recent advances in the management of lung cancer. Clin Med (Lond) 18, s41-s46.

    Jovanovic, I.P., Pejnovic, N.N., Radosavljevic, G.D., Arsenijevic, N.N., and Lukic, M.L. (2012). IL-33/ST2 axis in innate and acquired immunity to tumors. Oncoimmunology 1, 229-231.

    Jovanovic, I.P., Pejnovic, N.N., Radosavljevic, G.D., Pantic, J.M., Milovanovic, M.Z., Arsenijevic, N.N., and Lukic, M.L. (2014). Interleukin-33/ST2 axis promotes breast cancer growth and metastases by facilitating intratumoral accumulation of immunosuppressive and innate lymphoid cells. Int J Cancer 134, 1669-1682.

    Kalemkerian, G.P., Akerley, W., Bogner, P., Borghaei, H., Chow, L.Q., Downey, R.J., Gandhi, L., Ganti, A.K., Govindan, R., Grecula, J.C., et al. (2013). Small cell lung cancer. J Natl Compr Canc Netw 11, 78-98.

    Kanwal, M., Ding, X.J., and Cao, Y. (2017). Familial risk for lung cancer. Oncol Lett 13, 535-542.

    Kerkar, S.P., and Restifo, N.P. (2012). Cellular constituents of immune escape within the tumor microenvironment. Cancer Res 72, 3125-3130.


    Khan, M.N., Wang, B., Wei, J., Zhang, Y., Li, Q., Luan, X., Cheng, J.W., Gordon, J.R., Li, F., and Liu, H. (2015). CXCR1/2 antagonism with CXCL8/Interleukin-8 analogue CXCL8(3-72)K11R/G31P restricts lung cancer growth by inhibiting tumor cell proliferation and suppressing angiogenesis. Oncotarget 6, 21315-21327.

    Krzewski, K., Gil-Krzewska, A., Nguyen, V., Peruzzi, G., and Coligan, J.E. (2013). LAMP1/CD107a is required for efficient perforin delivery to lytic granules and NK-cell cytotoxicity. Blood 121, 4672-4683.

    Kurowska-Stolarska, M., Stolarski, B., Kewin, P., Murphy, G., Corrigan, C.J., Ying, S., Pitman, N., Mirchandani, A., Rana, B., van Rooijen, N., et al. (2009). IL-33 amplifies the polarization of alternatively activated macrophages that contribute to airway inflammation. J Immunol 183, 6469-6477.

    Lantz, P.M., Mendez, D., and Philbert, M.A. (2013). Radon, smoking, and lung cancer: the need to refocus radon control policy. Am J Public Health 103, 443-447.

    Larsen, K.M., Minaya, M.K., Vaish, V., and Pena, M.M.O. (2018). The Role of IL-33/ST2 Pathway in Tumorigenesis. Int J Mol Sci 19.

    Li, A., Herbst, R.H., Canner, D., Schenkel, J.M., Smith, O.C., Kim, J.Y., Hillman, M., Bhutkar, A., Cuoco, M.S., Rappazzo, C.G., et al. (2019a). IL-33 Signaling Alters Regulatory T Cell Diversity in Support of Tumor Development. Cell Rep 29, 2998-3008.e2998.

    Li, J., Tan, J., Martino, M.M., and Lui, K.O. (2018). Regulatory T-Cells: Potential Regulator of Tissue Repair and Regeneration. Front Immunol 9, 585.

    Li, X., Liu, R., Su, X., Pan, Y., Han, X., Shao, C., and Shi, Y. (2019b). Harnessing tumor-associated macrophages as aids for cancer immunotherapy. Mol Cancer 18, 177.
    Li, Z., Li, D., Tsun, A., and Li, B. (2015). FOXP3+ regulatory T cells and their functional regulation. Cell Mol Immunol 12, 558-565.

    Liew, F.Y., Girard, J.P., and Turnquist, H.R. (2016). Interleukin-33 in health and disease. Nat Rev Immunol 16, 676-689.


    Liu, V.C., Wong, L.Y., Jang, T., Shah, A.H., Park, I., Yang, X., Zhang, Q., Lonning, S., Teicher, B.A., and Lee, C. (2007). Tumor evasion of the immune system by converting CD4+CD25- T cells into CD4+CD25+ T regulatory cells: role of tumor-derived TGF-beta. J Immunol 178, 2883-2892.

    Lu, J., Kang, J., Zhang, C., and Zhang, X. (2015). The role of IL-33/ST2L signals in the immune cells. Immunol Lett 164, 11-17.

    Malhotra, J., Malvezzi, M., Negri, E., La Vecchia, C., and Boffetta, P. (2016). Risk factors for lung cancer worldwide. Eur Respir J 48, 889-902.

    Malyshev, I., and Malyshev, Y. (2015). Current Concept and Update of the Macrophage Plasticity Concept: Intracellular Mechanisms of Reprogramming and M3 Macrophage "Switch" Phenotype. Biomed Res Int 2015, 341308.

    Mantovani, A., Marchesi, F., Malesci, A., Laghi, L., and Allavena, P. (2017). Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol 14, 399-416.

    Martins, I., Raza, S.Q., Voisin, L., Dakhli, H., Allouch, A., Law, F., Sabino, D., De Jong, D., Thoreau, M., Mintet, E., et al. (2018). Anticancer chemotherapy and radiotherapy trigger both non-cell-autonomous and cell-autonomous death. Cell Death Dis 9, 716.

    McLemore, T.L., Adelberg, S., Liu, M.C., McMahon, N.A., Yu, S.J., Hubbard, W.C., Czerwinski, M., Wood, T.G., Storeng, R., Lubet, R.A., et al. (1990). Expression of CYP1A1 gene in patients with lung cancer: evidence for cigarette smoke-induced gene expression in normal lung tissue and for altered gene regulation in primary pulmonary carcinomas. J Natl Cancer Inst 82, 1333-1339.

    Miller, A.M., and Liew, F.Y. (2011). The IL-33/ST2 pathway--A new therapeutic target in cardiovascular disease. Pharmacol Ther 131, 179-186.

    Molina, J.R., Yang, P., Cassivi, S.D., Schild, S.E., and Adjei, A.A. (2008). Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc 83, 584-594.

    Montuenga, L.M., and Pio, R. (2007). Tumour-associated macrophages in nonsmall cell lung cancer: the role of interleukin-10. Eur Respir J 30, 608-610.
    Moussion, C., Ortega, N., and Girard, J.P. (2008). The IL-1-like cytokine IL-33 is constitutively expressed in the nucleus of endothelial cells and epithelial cells in vivo: a novel 'alarmin'? PLoS One 3, e3331.

    Munder, M., Eichmann, K., and Modolell, M. (1998). Alternative metabolic states in murine macrophages reflected by the nitric oxide synthase/arginase balance: competitive regulation by CD4+ T cells correlates with Th1/Th2 phenotype. J Immunol 160, 5347-5354.

    Navegantes, K.C., de Souza Gomes, R., Pereira, P.A.T., Czaikoski, P.G., Azevedo, C.H.M., and Monteiro, M.C. (2017). Immune modulation of some autoimmune diseases: the critical role of macrophages and neutrophils in the innate and adaptive immunity. J Transl Med 15, 36.

    Nelson, B.H. (2004). IL-2, regulatory T cells, and tolerance. J Immunol 172, 3983-3988.
    Nishida, A., Andoh, A., Imaeda, H., Inatomi, O., Shiomi, H., and Fujiyama, Y. (2010). Expression of interleukin 1-like cytokine interleukin 33 and its receptor complex (ST2L and IL1RAcP) in human pancreatic myofibroblasts. Gut 59, 531-541.

    Nunes, T., Bernardazzi, C., and de Souza, H.S. (2014). Interleukin-33 and inflammatory bowel diseases: lessons from human studies. Mediators Inflamm 2014, 423957.

    Ostrand-Rosenberg, S., and Fenselau, C. (2018). Myeloid-Derived Suppressor Cells: Immune-Suppressive Cells That Impair Antitumor Immunity and Are Sculpted by Their Environment. J Immunol 200, 422-431.

    Ostrand-Rosenberg, S., Sinha, P., Beury, D.W., and Clements, V.K. (2012). Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppression. Semin Cancer Biol 22, 275-281.

    Overacre-Delgoffe, A.E., and Vignali, D.A.A. (2018). Treg Fragility: A Prerequisite for Effective Antitumor Immunity? Cancer Immunol Res 6, 882-887.

    Park, S., Yoon, S.P., and Kim, J. (2015). Cisplatin induces primary necrosis through poly(ADP-ribose) polymerase 1 activation in kidney proximal tubular cells. Anat Cell Biol 48, 66-74.


    Pawelczyk, K., Piotrowska, A., Ciesielska, U., Jablonska, K., Gletzel-Plucinska, N., Grzegrzolka, J., Podhorska-Okolow, M., Dziegiel, P., and Nowinska, K. (2019). Role of PD-L1 Expression in Non-Small Cell Lung Cancer and Their Prognostic Significance according to Clinicopathological Factors and Diagnostic Markers. Int J Mol Sci 20.

    Qian, B.Z., and Pollard, J.W. (2010). Macrophage diversity enhances tumor progression and metastasis. Cell 141, 39-51.

    Qin, L., Dominguez, D., Chen, S., Fan, J., Long, A., Zhang, M., Fang, D., Zhang, Y., Kuzel, T.M., and Zhang, B. (2016). Exogenous IL-33 overcomes T cell tolerance in murine acute myeloid leukemia. Oncotarget 7, 61069-61080.

    Qin, X., Liu, C., Zhou, Y., and Wang, G. (2010). Cisplatin induces programmed death-1-ligand 1(PD-L1) over-expression in hepatoma H22 cells via Erk /MAPK signaling pathway. Cell Mol Biol (Noisy-le-grand) 56 Suppl, Ol1366-1372.

    Rasmussen, L., and Arvin, A. (1982). Chemotherapy-induced immunosuppression. Environ Health Perspect 43, 21-25.

    Ricci, M.S., and Zong, W.X. (2006). Chemotherapeutic approaches for targeting cell death pathways. Oncologist 11, 342-357.

    Rodriguez, P.C., Hernandez, C.P., Quiceno, D., Dubinett, S.M., Zabaleta, J., Ochoa, J.B., Gilbert, J., and Ochoa, A.C. (2005). Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma. J Exp Med 202, 931-939.

    Saintigny, P., Massarelli, E., Lin, S., Ahn, Y.H., Chen, Y., Goswami, S., Erez, B., O'Reilly, M.S., Liu, D., Lee, J.J., et al. (2013). CXCR2 expression in tumor cells is a poor prognostic factor and promotes invasion and metastasis in lung adenocarcinoma. Cancer Res 73, 571-582.

    Salvatore, V., Teti, G., Focaroli, S., Mazzotti, M.C., Mazzotti, A., and Falconi, M. (2017). The tumor microenvironment promotes cancer progression and cell migration. Oncotarget 8, 9608-9616.

    Samet, J.M. (2006). Residential radon and lung cancer: end of the story? J Toxicol Environ Health A 69, 527-531.
    Santini, F.C., and Hellmann, M.D. (2018). PD-1/PD-L1 Axis in Lung Cancer. Cancer J 24, 15-19.

    Sasada, T., Kimura, M., Yoshida, Y., Kanai, M., and Takabayashi, A. (2003). CD4+CD25+ regulatory T cells in patients with gastrointestinal malignancies: possible involvement of regulatory T cells in disease progression. Cancer 98, 1089-1099.

    Schiering, C., Krausgruber, T., Chomka, A., Fröhlich, A., Adelmann, K., Wohlfert, E.A., Pott, J., Griseri, T., Bollrath, J., Hegazy, A.N., et al. (2014). The alarmin IL-33 promotes regulatory T-cell function in the intestine. Nature 513, 564-568.

    Schmieder, A., Multhoff, G., and Radons, J. (2012). Interleukin-33 acts as a pro-inflammatory cytokine and modulates its receptor gene expression in highly metastatic human pancreatic carcinoma cells. Cytokine 60, 514-521.

    Shimoji, M., Shimizu, S., Sato, K., Suda, K., Kobayashi, Y., Tomizawa, K., Takemoto, T., and Mitsudomi, T. (2016). Clinical and pathologic features of lung cancer expressing programmed cell death ligand 1 (PD-L1). Lung Cancer 98, 69-75.

    Sica, A., and Bronte, V. (2007). Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest 117, 1155-1166.

    Siegel, R.L., Miller, K.D., and Jemal, A. (2019). Cancer statistics, 2019. CA Cancer J Clin 69, 7-34.

    Solito, S., Marigo, I., Pinton, L., Damuzzo, V., Mandruzzato, S., and Bronte, V. (2014). Myeloid-derived suppressor cell heterogeneity in human cancers. Ann N Y Acad Sci 1319, 47-65.

    Spyratos, D., Zarogoulidis, P., Porpodis, K., Tsakiridis, K., Machairiotis, N., Katsikogiannis, N., Kougioumtzi, I., Dryllis, G., Kallianos, A., Rapti, A., et al. (2013). Occupational exposure and lung cancer. J Thorac Dis 5 Suppl 4, S440-445.

    Stayner, L.T., Dankovic, D.A., and Lemen, R.A. (1996). Occupational exposure to chrysotile asbestos and cancer risk: a review of the amphibole hypothesis. Am J Public Health 86, 179-186.

    Sun, W., Wei, F.Q., Li, W.J., Wei, J.W., Zhong, H., Wen, Y.H., Lei, W.B., Chen, L., Li, H., Lin, H.Q., et al. (2017). A positive-feedback loop between tumour infiltrating activated Treg cells and type 2-skewed macrophages is essential for progression of laryngeal squamous cell carcinoma. Br J Cancer 117, 1631-1643.

    Tao, H., Mimura, Y., Aoe, K., Kobayashi, S., Yamamoto, H., Matsuda, E., Okabe, K., Matsumoto, T., Sugi, K., and Ueoka, H. (2012). Prognostic potential of FOXP3 expression in non-small cell lung cancer cells combined with tumor-infiltrating regulatory T cells. Lung Cancer 75, 95-101.

    Thompson, E.W., and Haviv, I. (2011). The social aspects of EMT-MET plasticity. Nat Med 17, 1048-1049.

    Thun, M.J., Hannan, L.M., Adams-Campbell, L.L., Boffetta, P., Buring, J.E., Feskanich, D., Flanders, W.D., Jee, S.H., Katanoda, K., Kolonel, L.N., et al. (2008). Lung cancer occurrence in never-smokers: an analysis of 13 cohorts and 22 cancer registry studies. PLoS Med 5, e185.

    Tran, D.Q. (2012). TGF-beta: the sword, the wand, and the shield of FOXP3(+) regulatory T cells. J Mol Cell Biol 4, 29-37.

    Tsai, T.F., Lin, J.F., Lin, Y.C., Chou, K.Y., Chen, H.E., Ho, C.Y., Chen, P.C., and Hwang, T.I. (2019). Cisplatin contributes to programmed death-ligand 1 expression in bladder cancer through ERK1/2-AP-1 signaling pathway. Biosci Rep 39.

    Uguen, M., Dewitte, J.D., Marcorelles, P., Loddé, B., Pougnet, R., Saliou, P., De Braekeleer, M., and Uguen, A. (2017). Asbestos-related lung cancers: A retrospective clinical and pathological study. Mol Clin Oncol 7, 135-139.

    Verri, W.A., Jr., Souto, F.O., Vieira, S.M., Almeida, S.C., Fukada, S.Y., Xu, D., Alves-Filho, J.C., Cunha, T.M., Guerrero, A.T., Mattos-Guimaraes, R.B., et al. (2010). IL-33 induces neutrophil migration in rheumatoid arthritis and is a target of anti-TNF therapy. Ann Rheum Dis 69, 1697-1703.

    Vignali, D.A., Collison, L.W., and Workman, C.J. (2008). How regulatory T cells work. Nat Rev Immunol 8, 523-532.

    Walser, T., Cui, X., Yanagawa, J., Lee, J.M., Heinrich, E., Lee, G., Sharma, S., and Dubinett, S.M. (2008). Smoking and lung cancer: the role of inflammation. Proc Am Thorac Soc 5, 811-815.

    Wang, C., Chen, Z., Bu, X., Han, Y., Shan, S., Ren, T., and Song, W. (2016). IL-33 signaling fuels outgrowth and metastasis of human lung cancer. Biochem Biophys Res Commun 479, 461-468.

    Wang, J., Liu, Q., Yuan, S., Xie, W., Liu, Y., Xiang, Y., Wu, N., Wu, L., Ma, X., Cai, T., et al. (2017a). Genetic predisposition to lung cancer: comprehensive literature integration, meta-analysis, and multiple evidence assessment of candidate-gene association studies. Sci Rep 7, 8371.

    Wang, K., Shan, S., Yang, Z., Gu, X., Wang, Y., Wang, C., and Ren, T. (2017b). IL-33 blockade suppresses tumor growth of human lung cancer through direct and indirect pathways in a preclinical model. Oncotarget 8, 68571-68582.

    Westra, W.H., Slebos, R.J., Offerhaus, G.J., Goodman, S.N., Evers, S.G., Kensler, T.W., Askin, F.B., Rodenhuis, S., and Hruban, R.H. (1993). K-ras oncogene activation in lung adenocarcinomas from former smokers. Evidence that K-ras mutations are an early and irreversible event in the development of adenocarcinoma of the lung. Cancer 72, 432-438.

    Whiteside, T.L. (2008). The tumor microenvironment and its role in promoting tumor growth. Oncogene 27, 5904-5912.

    Wistuba, II, Lam, S., Behrens, C., Virmani, A.K., Fong, K.M., LeRiche, J., Samet, J.M., Srivastava, S., Minna, J.D., and Gazdar, A.F. (1997). Molecular damage in the bronchial epithelium of current and former smokers. J Natl Cancer Inst 89, 1366-1373.

    Xiao, P., Wan, X., Cui, B., Liu, Y., Qiu, C., Rong, J., Zheng, M., Song, Y., Chen, L., He, J., et al. (2016). Interleukin 33 in tumor microenvironment is crucial for the accumulation and function of myeloid-derived suppressor cells. Oncoimmunology 5, e1063772.

    Yang, J., Balbo, S., Villalta, P.W., and Hecht, S.S. (2019). Analysis of Acrolein-Derived 1, N(2)-Propanodeoxyguanosine Adducts in Human Lung DNA from Smokers and Nonsmokers. Chem Res Toxicol 32, 318-325.
    Yang, L., Wang, F., Wang, L., Huang, L., Wang, J., Zhang, B., and Zhang, Y. (2015). CD163+ tumor-associated macrophage is a prognostic biomarker and is associated with therapeutic effect on malignant pleural effusion of lung cancer patients. Oncotarget 6, 10592-10603.

    Yang, M., Liu, P., Wang, K., Glorieux, C., Hu, Y., Wen, S., Jiang, W., and Huang, P. (2017). Chemotherapy induces tumor immune evasion by upregulation of programmed cell death ligand 1 expression in bone marrow stromal cells. Mol Oncol 11, 358-372.
    Yang, Y., Wang, J.B., Li, Y.M., Zhao, Y.U., Wang, R., Wu, Q., Zheng, R.S., and Ou, Y.R. (2016). Role of IL-33 expression in oncogenesis and development of human hepatocellular carcinoma. Oncol Lett 12, 429-436.

    Yang, Z., Gao, X., Wang, J., Xu, L., Zheng, Y., and Xu, Y. (2018). Interleukin-33 enhanced the migration and invasiveness of human lung cancer cells. Onco Targets Ther 11, 843-849.

    Yang, Z., Grinchuk, V., Urban, J.F., Jr., Bohl, J., Sun, R., Notari, L., Yan, S., Ramalingam, T., Keegan, A.D., Wynn, T.A., et al. (2013). Macrophages as IL-25/IL-33-responsive cells play an important role in the induction of type 2 immunity. PLoS One 8, e59441.

    Zang, X. (2018). 2018 Nobel Prize in medicine awarded to cancer immunotherapy: Immune checkpoint blockade - A personal account. Genes Dis 5, 302-303.

    Zappa, C., and Mousa, S.A. (2016). Non-small cell lung cancer: current treatment and future advances. Transl Lung Cancer Res 5, 288-300.

    Zea, A.H., Rodriguez, P.C., Atkins, M.B., Hernandez, C., Signoretti, S., Zabaleta, J., McDermott, D., Quiceno, D., Youmans, A., O'Neill, A., et al. (2005). Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res 65, 3044-3048.

    Zhang, P., Ma, Y., Lv, C., Huang, M., Li, M., Dong, B., Liu, X., An, G., Zhang, W., Zhang, J., et al. (2016). Upregulation of programmed cell death ligand 1 promotes resistance response in non-small-cell lung cancer patients treated with neo-adjuvant chemotherapy. Cancer Sci 107, 1563-1571.


    Zheng, Y., and Rudensky, A.Y. (2007). Foxp3 in control of the regulatory T cell lineage. Nat Immunol 8, 457-462.

    Zhu, Q., Wu, X., Wu, Y., and Wang, X. (2016). Interaction between Treg cells and tumor-associated macrophages in the tumor microenvironment of epithelial ovarian cancer. Oncol Rep 36, 3472-3478.

    下載圖示 校內:2025-08-19公開
    校外:2025-08-19公開
    QR CODE