簡易檢索 / 詳目顯示

研究生: 天龍
Okti, Ariyanto Bagus
論文名稱: 以MnCl2電化學氧化法礦化有機酸之研究
Mineralization of Organic Acid in the presence of MnCl2 by Electrochemical Oxidation Method
指導教授: 黃耀輝
Huang, Yao-Hui
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 92
中文關鍵詞: 電解氧化Ti-DSAMnCl2HOClε-MnO2
外文關鍵詞: Electrochemical oxidation, MnCl2, HOCl, ε-MnO2, Ti-DSA
相關次數: 點閱:82下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究結合氯化學與電解氧化系統建立一項新穎水處理技術以礦化各式有機酸。吾人使用RuO2/IrO2 (Ti-DSA) 為陰陽極,設計可批次處理3.5 L水溶液之電解反應槽 (12x12x40 cm3)。在所選用氯鹽電解質中(MgCl2, NaCl, FeCl2及MnCl2),MnCl2不僅提供氯離子進行電化學反應產生次氯酸以降解目標污染物之外,Mn2+經電解氧化後逐漸披覆在陽極表面,進一步提高此系統之氧化效能。在所有氯化學成分中,包括Cl2、HOCl及OCl-,HOCl為最高活性之氧化劑且隨pH增加產率,實驗結果顯示,有機酸礦化效率取決於pH、電流密度與電極構造。當添加20 ml MnCl2並調整電流1A、pH 3時,草酸 (2 mM) 可於60分鐘內完全被礦化 (TOCr ≥ 98%); 當電流提升至5 A時,亦可於2小時內大幅提升檸檬酸 (0.694 mM)之TOC去除率 (TOCr ≥ 94%)。最終,本研究意外發現氯離子電解反應過程,累積於陽極表面的黑色錳粉為ε-MnO2晶相,相關實驗分析已證實其具有單獨降解有機酸之能力,是極具後續性能開發潛力之氧化劑材料。

    The electrochemical oxidation of numerous organic species is investigated under reaction with chlorine system. The electrolysis of chloride salts can give rise to the chlorine chemistry, in which the presence of HOCl dominated by pH condition has a great impact on the degradation of organic acids. Meanwhile, among the electrolytes, including Mg, Na, and Fe chloride salts, the manganese cations can be electrically and chemically oxidized to ε-MnO2 which is deposited directly on the anode surface resulting in a high voltage. The electrolytic reactor (12x12x40 cm3) can accommodate 3.5 L solution in a batch reaction in which both anode and cathode were made of titanium coated with RuO2/IrO2 (Ti-DSA). The oxidation rate of organic acid and the crystal structure of manganese dioxide are determined by the electrolytical parameters, including the pH value, current density, temperature and the electrode material. The results showed that the electrolysis of 20 mM MnCl2 using Ti-DSA electrode (current 1A, pH 3) is much more efficient to completely mineralize the oxalic acid (2 mM) in 60 minutes (TOCr ≥ 98%) than the electrolysis of Mg, Na, and Fe chloride salts. Furthermore, the electrochemical system of MnCl2 (current 5A, pH 3) substantially improves the TOC removal of citric acid (0.694 mM) in 2 hours (TOCr ≥ 94%). Of the chlorine species, HOCl has relatively high activity for the degradation of organic acids. Besides, the ε-MnO2 was also valid to oxidize the organic acids solely. A novel chloride electrochemical technology combined the ε-MnO2 deposition on anode has proved to be a potential process particularly for managing the wastewater of organic acids.

    中文摘要 ……………………………………………………………………………I ABSTRACT II ACKNOWLEDGEMENT III TABLE OF CONTENTS IV LIST OF TABLES VII LIST OF FIGURES VIII Chapter 1 INTRODUCTION 1 1.1 Background 1 1.2 Research Objectives 3 1.3 Thesis Structure 3 Chapter 2 LITERATURE REVIEW 4 2.1 Electrochemistry and Environment 4 2.1.1 Oxidation-Reduction Processes 5 2.1.2 Direct and indirect electrochemical oxidation 8 2.2 Dimensionally Stable Anodes (DSA) for Electrode Material 13 2.3 Manganese Compounds 15 2.3.1 Amorphous-Manganese Dioxide (a-MnO2) 18 2.3.2 Akhtenskite/Epsilon-Manganese Dioxide (ε-MnO2) 19 2.3.3 Electrochemical Oxidation of Manganese (II) Ions on the Ti-DSA Electrode. 20 2.3.4 Influence of Chlorine for Manganese Oxidation. 23 2.4 Related Literature 26 Chapter 3 EXPERIMENTAL METHODS 30 3.1 Framework of the Experiment 30 3.2 Materials and Analytical Methods 31 3.2.1 Materials 31 3.2.2 Analytical Methods 31 3.3 Experimental Apparatus and Procedures 40 3.3.1 Experimental apparatus 40 3.3.2 Experimental Procedures 41 Chapter 4 RESULTS AND DISCUSSION 43 4.1 Degradation and Mineralization of Organic Acid in the Electrochemical Oxidation Processes 43 4.1.1 Oxalic Acid Mineralization in the Chlorine System 43 4.1.2 Effect of Differences Electrode Anode Sizes and Geometry 45 4.1.3 Effect of Salts and Metal Precipitates 47 4.2 Electrochemical Deposition of Manganese dioxide (EDM) 51 4.3 Characterization / identification of deposited species on the surface of anode 52 4.3.1 FTIR Studies 52 4.3.2 Results of EDS and AAs measurements 54 4.3.3 Thermogravimetric Analysis 55 4.3.4 Transmission Electron Microscope Image Study 56 4.3.5 X-Ray Diffraction (XRD) Analysis 57 4.4 Degradation Performances on the Various Organic Acids 58 4.4.1 Effect of Organic Types 59 4.4.2 Concentration of NaOCl effect on the Degradation of Citric Acid 60 4.4.3 Effect of Manganese-salts 62 4.4.4 Effect of Initial pH 63 4.4.5 Effect of Temperature 65 4.5 Application of ε-MnO2 Deposited on the Ti-DSA Electrode for Organic Acid Mineralization 66 4.5.1 Mineralization of Oxalic Acid using Ti-DSA/ε-MnO2 Electrode 67 4.5.2 Relationship between Current, [H+], and Conductivity on the MnO2 Deposited to Ti-DSA Electrode 69 4.5.3 Degradation of Citric Acid using Ti-DSA/ε-MnO2 Electrode 71 4.5.4 Stability and Efficiency of ε-MnO2 Deposited on the Ti-DSA Electrode …………………………………………………74 Chapter 5 CONCLUSIONS AND SUGGESTIONS 75 5.1 CONCLUSIONS 75 5.2 SUGGESTIONS 76 REFERENCES 77

    [1] R. J. Watts and A. L. Teel, "Chemistry of Modified Fenton's Reagent (Catalyzed H2O2 Propagations--CHP) for In Situ Soil and Groundwater Remediation," Journal of Environmental Engineering, vol. 131, pp. 612-622, 2005.
    [2] R. J. Watts and A. L. Teel, "Treatment of Contaminated Soils and Groundwater Using ISCO," Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, vol. 10, pp. 2-9, 2006.
    [3] Y. E. Yan and F. W. Schwartz, "Kinetics and Mechanisms for TCE Oxidation by Permanganate," Environmental Science & Technology, vol. 34, pp. 2535-2541, 2000.
    [4] Y.-H. Huang, Y.-J. Shih, and C.-H. Liu, "Oxalic Acid Mineralization by Electrochemical Oxidation Processes," Journal of Hazardous Materials, vol. 188, pp. 188-192, 2011.
    [5] C. Comninellis and A. Nerini, "Anodic Oxidation of Phenol in the Presence of Nacl for Wastewater Treatment," Journal of Applied Electrochemistry, vol. 25, pp. 23-28, 1995.
    [6] C. Comninellis and C. Pulgarin, "Electrochemical Oxidation of Phenol for Wastewater Treatment using SnO2 Anodes," Journal of Applied Electrochemistry, vol. 23, pp. 108-112, 1993.
    [7] K. Rajeshwar, J. G. Ibanez, and G. M. Swain, "Electrochemistry and the Environment," Journal of Applied Electrochemistry, vol. 24, pp. 1077-1091, 1994.
    [8] J. D. Rodgers, W. Jedral, and N. J. Bunce, "Electrochemical Oxidation of Chlorinated Phenols," Environmental Science & Technology, vol. 33, pp. 1453-1457, 1999.
    [9] C. A. Martinez-Huitle and S. Ferro, "Electrochemical Oxidation of Organic Pollutants for the Wastewater Treatment: Direct and Indirect Processes," Chemical Society Reviews, vol. 35, 2006.
    [10] K. Juttner, U. Galla, and H. Schmieder, "Electrochemical Approaches to Environmental Problems in the Process Industry," Electrochimica Acta, vol. 45, pp. 2575-2594, 2000.
    [11] C. A. Martínez-Huitle and L. S. Andrade, "Electrocatalysis in Wastewater Treatment: Recent Mechanism Advances," Química Nova, vol. 34, pp. 850-858, 2011.
    [12] C. A. MartÍNez-Huitle, S. Ferro, and A. De Battisti, "Electrochemical Incineration of Oxalic Acid: Reactivity and Engineering Parameters," Journal of Applied Electrochemistry, vol. 35, pp. 1087-1093, 2005.
    [13] O. Scialdone, S. Randazzo, A. Galia, and G. Silvestri, "Electrochemical Oxidation of Organics in Water: Role of Operative Parameters in the Absence and in the Presence of NaCl," Water Research, vol. 43, pp. 2260-2272, May 2009.
    [14] L.-C. Chiang, J.-E. Chang, and T.-C. Wen, "Indirect Oxidation Effect in Electrochemical Oxidation Treatment of Landfill Leachate," Water Research, vol. 29, pp. 671-678, 1995.
    [15] T. S, "Electrocatalysis: Understanding the Success of DSA®," Electrochimica Acta, vol. 45, pp. 2377-2385, 2000.
    [16] X.-y. Li, Y.-h. Cui, Y.-j. Feng, Z.-m. Xie, and J.-D. Gu, "Reaction Pathways and Mechanisms of the Electrochemical Degradation of Phenol on Different Electrodes," Water Research, vol. 39, pp. 1972-1981, 2005.
    [17] F. L. B. George Tchobanoglous, H.David Stensel, "Waste Water Engineering: Treatment and Reuse," 2003.
    [18] S. Trasatti, "Electrochemistry and Environment: The Role of Electrocatalysis," International Journal of Hydrogen Energy, vol. 20, pp. 835-844, 1995.
    [19] K. Rajeshwar and J. G. Ibanez, Environmental Electrochemistry. Fundamentals and Applications in Pollution Abatement, 1997.
    [20] N. Sutin, "the Mechanisms of Some Electron-Transfer Reactions in Solution," Electrochimica Acta, vol. 13, pp. 1175-1180, 1968.
    [21] R. G.Wilkins, "Kinetics and Mechanism of Reaction of Transition Metal Complexes," 2002.
    [22] O. Legrini, E. Oliveros, and A.M. Braun, "Photochemical Processes for Water Treatment," Chemical Reviews pp. 671-698, 1993.
    [23] T. Oppenländer, "Photochemical Purification of Water and Air: Advanced Oxidation Processes (AOPs): Principles, Reaction Mechanisms, Reactor Concepts," Wiley-VCH, 2003.
    [24] P. Cañizares, J. Lobato, R. Paz, M. A. Rodrigo, and C. Sáez, "Advanced Oxidation Processes for the Treatment of Olive-Oil Mills Wastewater," Chemosphere, vol. 67, pp. 832-838, 2007.
    [25] G. Chen, Sep. Purif. Technol., vol. 38, p. 11, 2004.
    [26] J. Muff, "Applications Of Electrochemical Oxidation for Degradation of Aqueous Organic Pollutants," Thesis Aalborg University, 2010.
    [27] C. Comninellis, A. Kapalka, S. Malato, S. A. Parsons, I. Poulios, and D. Mantzavinos, "Advanced Oxidation Processes for Water Treatment: Advances and Trends for R&D," Journal of Chemical Technology & Biotechnology, vol. 83, pp. 769-776, 2008.
    [28] M. Panizza and G. Cerisola, "Application of Diamond Electrodes to Electrochemical Processes," Electrochimica Acta, vol. 51, pp. 191-199, 2005.
    [29] M. Panizza and G. Cerisola, "Direct And Mediated Anodic Oxidation of Organic Pollutants," Chemical Reviews, vol. 109, pp. 6541-6569, 2009.
    [30] M. Panizza and G. Cerisola, "ChemInform Abstract: Direct and Mediated Anodic Oxidation of Organic Pollutants," ChemInform, vol. 41, pp. no-no, 2010.
    [31] G. G. Carlos Alberto Martínez Huitle, A. De Battisti, S. Ferro, "Direct and Indirect Electrochemical Oxidation of Organic Pollutants," 2004.
    [32] G. R. P. Malpass, D. W. Miwa, S. A. S. Machado, P. Olivi, and A. J. Motheo, "Oxidation of the Pesticide Atrazine at DSA® Electrodes," Journal of Hazardous Materials, vol. 137, pp. 565-572, 2006.
    [33] I. C. Man, H. Y. Su, F. Calle-Vallejo, H. A. Hansen, J. I. Martinez, N. G. Inoglu, J. Kitchin, T. F. Jaramillo, J. K. Norskov, and J. Rossmeisl, "Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces," ChemCatChem, vol. 3, pp. 1159-1165, Jul 2011.
    [34] B. Marselli, J. Garcia-Gomez, P. A. Michaud, M. A. Rodrigo, and C. Comninellis, "Electrogeneration of Hydroxyl Radicals on Boron-Doped Diamond Electrodes," Journal of The Electrochemical Society, vol. 150, pp. D79-D83, 2003.
    [35] S. Fierro, T. Nagel, H. Baltruschat, and C. Comninellis, "Investigation of the Oxygen Evolution Reaction on Ti/IrO2 Electrodes using Isotope Labelling and On-Line Mass Spectrometry," Electrochemistry Communications, vol. 9, pp. 1969-1974, 2007.
    [36] T. N. S Fierro, H Baltruschat, C Comninellis, " Investigation of Formic Acid Oxidation on Ti/IrO2 Electrodes using Isotope Labeling and Online Mass Spectrometry," Electrochemical and Solid State Letters, vol. 11, E20-E23, 2008.
    [37] T. N. S Fierro, H Baltruschat, C Comninellis, " Investigation of the Oxygen Evolution Reaction on Ti/IrO2 Electrodes using Isotope Labelling and On-Line Mass Spectrometry," Electrochemistry Communications, 2007.
    [38] D. Rajkumar and K. Palanivelu, "Electrochemical Treatment of Industrial Wastewater," Journal of Hazardous Materials, vol. 113, pp. 123-129, 2004.
    [39] D. Rajkumar, B. J. Song, and J. G. Kim, "Electrochemical Degradation of Reactive Blue 19 in Chloride Medium for the Treatment of Textile Dyeing Wastewater with Identification of Intermediate Compounds," Dyes and Pigments, vol. 72, pp. 1-7, 2007.
    [40] T. N. Rao and A. Fujishima, "Recent Advances in Electrochemistry of Diamond," Diamond and Related Materials, vol. 9, pp. 384-389, 2000.
    [41] M. Panizza and G. Cerisola, "Influence of Anode Material on the Electrochemical Oxidation of 2-Naphthol: Part 2. Bulk electrolysis experiments," Electrochimica Acta, vol. 49, pp. 3221-3226, 2004.
    [42] M. Panizza and G. Cerisola, "Olive Mill Wastewater Treatment by Anodic Oxidation with Parallel Plate Electrodes," Water Research, vol. 40, pp. 1179-1184, 2006.
    [43] M. Zhou, Z. Wu, and D. Wang, "Electrocatalytic Degradation of Phenol in Acidic and Saline Wastewater," Journal of Environmental Science and Health, Part A, vol. 37, pp. 1263-1275, 2002.
    [44] J. Naumczyk, L. Szpyrkowicz, and F. Zilio-Grandi, "Electrochemical Treatment of Textile Wastewater," Water Science and Technology, vol. 34, pp. 17-24, 1996.
    [45] P. Canizares, F. Martinez, M. Diaz, J. Garcia-Gomez, and M. A. Rodrigo, "Electrochemical Oxidation of Aqueous Phenol Wastes Using Active and Nonactive Electrodes," Journal of The Electrochemical Society, vol. 149, pp. D118-D124, 2002.
    [46] B. K. Körbahtı, B. Salih, and A. Tanyolaç, "Electrochemical Conversion of Phenolic Wastewater on Carbon Electrodes in the Presence of NaCl," Journal of Chemical Technology & Biotechnology, vol. 77, pp. 70-76, 2002.
    [47] M. Panizza, M. Delucchi, and G. Cerisola, "Electrochemical Degradation of Anionic Surfactants," Journal of Applied Electrochemistry, vol. 35, pp. 357-361, 2005.
    [48] M. O. Azzam, M. Al-Tarazi, and Y. Tahboub, "Anodic Destruction of 4-Chlorophenol Solution," Journal of Hazardous Materials, vol. 75, pp. 99-113, 2000.
    [49] F. Bonfatti, A. De Battisti, S. Ferro, G. Lodi, and S. Osti, "Anodic Mineralization of Organic Substrates in Chloride-Containing Aqueous Media," Electrochimica Acta, vol. 46, pp. 305-314, 2000.
    [50] F. Bonfatti, S. Ferro, F. Lavezzo, M. Malacarne, G. Lodi, and A. De Battisti, "Electrochemical Incineration of Glucose as a Model Organic Substrate. II. Role of Active Chlorine Mediation," Journal of The Electrochemical Society, vol. 147, pp. 592-596, 2000.
    [51] C. Cameselle, M. Pazos, and M. A. Sanromán, "Selection of an Electrolyte to Enhance the Electrochemical Decolourisation of Indigo. Optimisation and scale-up," Chemosphere, vol. 60, pp. 1080-1086, 2005.
    [52] B. K. Körbahti and A. Tanyolaç, "Kinetic Modeling of Conversion Products in the Electrochemical Treatment of Phenolic Wastewater with a NaCl Electrolyte," Industrial & Engineering Chemistry Research, vol. 42, pp. 5060-5065, 2003.
    [53] B. K. Körbahti and A. Tanyolaç, "Continuous Electrochemical Treatment of Phenolic Wastewater in a Tubular Reactor," Water Research, vol. 37, pp. 1505-1514, 2003.
    [54] B. K. Körbahtİ and A. Tanyolaç, "Modeling of a Continuous Electrochemical Tubular Reactor for Phenol Removal," Chemical Engineering Communications, vol. 190, pp. 749-762, 2003.
    [55] V. López-Grimau and M. C. Gutiérrez, "Decolourisation of Simulated Reactive Dyebath Effluents by Electrochemical Oxidation Assisted by UV Light," Chemosphere, vol. 62, pp. 106-112, 2006.
    [56] P. Manisankar, C. Rani, and S. Viswanathan, "Effect of Halides in the Electrochemical Treatment of Distillery Effluent," Chemosphere, vol. 57, pp. 961-966, 2004.
    [57] D. Rajkumar and K. Palanivelu, "Electrochemical Degradation of Cresols for Wastewater Treatment," Industrial & Engineering Chemistry Research, vol. 42, pp. 1833-1839, 2003.
    [58] A. Vlyssides, D. Arapoglou, C. Israilides, and P. Karlis, "Electrochemical Oxidation of Three Obsolete Organophosphorous Pesticides Stocks," Journal of Pesticide Science, vol. 29, pp. 105-109, 2004.
    [59] A. Vlyssides, D. Arapoglou, S. Mai, and E. M. Barampouti, "Electrochemical Detoxification of Four Phosphorothioate Obsolete Pesticides Stocks," Chemosphere, vol. 58, pp. 439-447, 2005.
    [60] A. Vlyssides, E. M. Barampouti, S. Mai, D. Arapoglou, and A. Kotronarou, "Degradation of Methylparathion in Aqueous Solution by Electrochemical Oxidation," Environmental Science & Technology, vol. 38, pp. 6125-6131, 2004.
    [61] A. G. Vlyssides, D. G. Arapoglou, C. J. Israilides, E. M. P. Barampouti, and S. T. Mai, "Electrochemical Treatment of Methyl Parathion Based on the Implementation of a Factorial Design," Journal of Applied Electrochemistry, vol. 34, pp. 1265-1269, 2004.
    [62] B. Wang, W. Kong, and H. Ma, "Electrochemical Treatment of Paper Mill Wastewater using Three-Dimensional Electrodes with Ti/Co/SnO2-Sb2O5 Anode," Journal of Hazardous Materials, vol. 146, pp. 295-301, 2007.
    [63] E. Chatzisymeon, N. P. Xekoukoulotakis, A. Coz, N. Kalogerakis, and D. Mantzavinos, "Electrochemical Treatment of Textile Dyes and Dyehouse Effluents," Journal of Hazardous Materials, vol. 137, pp. 998-1007, 2006.
    [64] P. C. Foller and M. L. Goodwin, "The Electrochemical Ceneration Of High Concentration Ozone For Small-Scale Applications," Ozone: Science & Engineering, vol. 6, pp. 29-36, 1984.
    [65] P. C. Foller and M. L. Goodwin, Chem. Eng. Prog., vol. 81, p. 49, 1985.
    [66] P. C. Foller and G. H. Kelsall, "Ozone Generation Via the Electrolysis of Fluoboric Acid Using Glassy Carbon Anodes and Air Depolarized Cathodes," Journal of Applied Electrochemistry, vol. 23, pp. 996-1010, 1993.
    [67] L. Szpyrkowicz, G. H. Kelsall, S. N. Kaul, and M. De Faveri, "Performance of Electrochemical Reactor for Treatment ofTannery Wastewaters," Chemical Engineering Science, vol. 56, pp. 1579-1586, 2001.
    [68] L. Szpyrkowicz, C. Juzzolino, S. Daniele, and M. D. D. Faveri, "Electrochemical Destruction of Thiourea Dioxide in an Undivided Parallel Plate Electrodes Batch Reactor," Catalysis Today, vol. 66, pp. 519-527, 2001.
    [69] L. Szpyrkowicz, C. Juzzolino, S. N. Kaul, S. Daniele, and M. D. De Faveri, "Electrochemical Oxidation of Dyeing Baths Bearing Disperse Dyes," Industrial & Engineering Chemistry Research, vol. 39, pp. 3241-3248, 2000.
    [70] L. Szpyrkowicz, S. N. Kaul, and R. N. Neti, "Tannery Wastewater Treatment by Electro-Oxidation Coupled with a Biological Process," Journal of Applied Electrochemistry, vol. 35, pp. 381-390, 2005.
    [71] L. Szpyrkowicz, S. N. Kaul, R. N. Neti, and S. Satyanarayan, "Influence of Anode Material on Electrochemical Oxidation for the Treatment of Tannery Wastewater," Water Research, vol. 39, pp. 1601-1613, 2005.
    [72] L. Szpyrkowicz, J. Naumczyk, and F. Zilio-Grandi, "Electrochemical Treatment of Tannery Wastewater using TiPt and Ti/Pt/Ir electrodes," Water Research, vol. 29, pp. 517-524, 1995.
    [73] L. Szpyrkowicz and M. Radaelli, "Scale-up of an Electrochemical Reactor for Treatment of Industrial Wastewater with an Electrochemically Generated Redox Mediator," Journal of Applied Electrochemistry, vol. 36, pp. 1151-1156, 2006.
    [74] L. Szpyrkowicz and M. Radaelli, "Electrochemical Single‐Cell Reactor for Treatment of Industrial Wastewater Composed of a Spent Textile Bath," Separation Science and Technology, vol. 42, pp. 1493-1504, 2007.
    [75] P. Tatapudi and J. M. Fenton, "Synthesis of Ozone in a Proton Exchange Membrane Electrochemical Reactor," Journal of The Electrochemical Society, vol. 140, pp. 3527-3530, 1993.
    [76] P. Tatapudi and J. M. Fenton, "Simultaneous Synthesis of Ozone and Hydrogen Peroxide in a Proton-Exchange-Membrane Electrochemical Reactor," Journal of The Electrochemical Society, vol. 141, pp. 1174-1178, 1994.
    [77] A. Vlyssides, P. Karlis, M. Loizidou, A. Zorpas, and D. Arapoglou, "Treatment of Leachate from a Domestic Solid Waste Sanitary Landfill by an Electrolysis System," Environmental Technology, vol. 22, pp. 1467-1476, 2001.
    [78] A. G. Vlyssides, P. K. Karlis, and G. Mahnken, "Influence of Various Parameters on the Electrochemical Treatment of Landfill Leachates," Journal of Applied Electrochemistry, vol. 33, pp. 155-159, 2003.
    [79] F. Bonfatti, S. Ferro, F. Lavezzo, M. Malacarne, G. Lodi, and A. De Battisti, "Electrochemical Incineration of Glucose as a Model Organic Substrate. I. Role of the Electrode Material," Journal of The Electrochemical Society, vol. 146, pp. 2175-2179, 1999.
    [80] Y. J. Feng and X. Y. Li, "Electro-catalytic Oxidation of Phenol on Several Metal-Oxide Electrodes in Aqueous Solution," Water Research, vol. 37, pp. 2399-2407, 2003.
    [81] M. Gonçalves, A. Joyce, M. Alves, J. P. Correia, and I. P. Marques, "Anodic Oxidation of Oleate for Wastewater Treatment," Desalination, vol. 185, pp. 351-355, 2005.
    [82] D. W. Miwa, G. R. P. Malpass, S. A. S. Machado, and A. J. Motheo, "Electrochemical Degradation of Carbaryl on Oxide Electrodes," Water Research, vol. 40, pp. 3281-3289, 2006.
    [83] M. Panizza and G. Cerisola, "Electrocatalytic Materials for the Electrochemical Oxidation of Synthetic Dyes," Applied Catalysis B: Environmental, vol. 75, pp. 95-101, 2007.
    [84] A. Socha, E. Chrzescijanska, and E. Kusmierek, "Electrochemical and Photoelectrochemical Treatment of 1-Aminonaphthalene-3,6-Disulphonic Acid," Dyes and Pigments, vol. 67, pp. 71-75, 2005.
    [85] C. L. P. S. Zanta, A. R. de Andrade, and J. F. C. Boodts, "Electrochemical Behaviour of Olefins: Oxidation at Ruthenium–Titanium Dioxide and Iridium–Titanium Dioxide Coated Electrodes," Journal of Applied Electrochemistry, vol. 30, pp. 467-474, 2000.
    [86] S. P. J. Horacek, Chem. Eng. Prog. 67, vol. 27, 1971.
    [87] O. D. Nora, Chem.-Ing.-Tech. 43, vol. 182, 1971.
    [88] i. S. T. A. Nidola, G. Lodi (Eds.), "Electrodes of Conductive Metallic Oxides," Part B, Elsevier, Amsterdam, p. 627, 1981.
    [89] E. S. G. Lodi, A. De Battisti, S. Trasatti, J. Appl.Electrochem. Commun., vol. 135, 1978.
    [90] H. L. P. Y.S. Huang, F.H. Pollak, Mater. Res. Bull. , 1983.
    [91] S. T. P. Castelli, F.H. Pollak, W.E. O’Grady, J., Electroanal. Chem. 210, 1986.
    [92] L. I. Krishtalik, Electrochim. Acta 26, 1981.
    [93] M. R. T. B.N. Efremov, Elektrokhimiya 17, 1981.
    [94] S. S. R. Ko¨ tz, Electrochim. Acta 31, 1986.
    [95] V. A. N. V.V. Gorodetskii, M.M. Pecherskii, J. Electrochem. Soc., 1994.
    [96] Kirk-Othmer Encyclopedia of Chemical Technology (4th Edition), vol. 15.
    [97] G. H. Kelsall, Guerra, E., Li, G. and Bestetti, M, "Effects of Manganese(II) and Chloride Ions in Zinc Electrowinning Reactors," In Proceedings of Electrochemical Society, vol. 14, pp. 350-361, 2000.
    [98] K. Kim and T. Z. Fahidy, "A direct Visualization Study of Anodically Generated Free Convection—I. The Electrochemical Generation of Mn(III) Ions," Electrochimica Acta, vol. 34, pp. 525-532, 1989.
    [99] A. H. R. H. S. Posselt, and W. J. Weber, Jr., J. Am. , Water Works Assoc, 1968.
    [100] J. A. K. K. Murray and D. H. Russell, Chem. Soc. Mass Spectrom. 5, 1, 1994.
    [101] R. W. B. T. Chait, R. C. Beavis, and S. B. H. Kent, Science 262, 89, 1993.
    [102] A. M. M. Vestling and C. Fenselau, Chem. 66, 471, 1994.
    [103] A. C. R. Ryhage, 759 1964.
    [104] H. K. Q. Feng, K. Ooi, J. Mater, Chem. 9, vol. 319, 1999.
    [105] C. M. Julien, M. Massot, and C. Poinsignon, "Lattice Vibrations of Manganese Oxides: Part I. Periodic Structures," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 60, pp. 689-700, 2004.
    [106] S. Devaraj and N. Munichandraiah, "Effect of Crystallographic Structure of MnO2 on Its Electrochemical Capacitance Properties," The Journal of Physical Chemistry C, vol. 112, pp. 4406-4417, 2008.
    [107] W. Xiao, H. Xia, J.-Y.-H. Fuh, and L. Lu, "Electrochemical Synthesis and Supercapacitive Properties of epsilon MnO2 with Porous/Nanoflaky Hierarchical Architectures," Journal of The Electrochemical Society, vol. 156, pp. A627-A633, 2009.
    [108] W. D. Z. J. Chen, and J. S. Ye,, Electrochem. Commun., 10, 2008.
    [109] B. G. C. Yuan, L. Su, and X. Zhang, J. Colloid Interface Sci., 322, 545, 2008.
    [110] D.E.Simon, R.W.Morton, and J.J.Gislason, "A Close Look at Electrolytic Manganese Dioxide (EMD) and the -MnO2 & -MnO2 Phases using Rietveld ModelinG," JCPDS, vol. Volume 47, pp. 267-280, 2004.
    [111] A. Q. H. A. H. Heuer, P.J. Hughes, and F. H. Feddrix, , ITE Letters on Batteries, ,New Technologies & Medicine, pp. 76-80., 2000.
    [112] H. o. B. D. Linden, Mc-Graw-Hill, 1995.
    [113] J. A. Lee, W. C. Maskell, and F. L. Tye, "The Electrochemical Reduction of Manganese Dioxide in Acidic Solutions: Part I. Voltammetric Peak 1," Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 79, pp. 79-104, 1977.
    [114] J. A. Lee, W. C. Maskell, and F. L. Tye, "The Electrochemical Reduction of Manganese Dioxide in Acidic Solutions: Part III. Voltammetric Peak 3," Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 110, pp. 145-158, 1980.
    [115] C. C. J.Ph. Petitpierre, E. Plattner, Electrochim. Acta, vol. 281, 1990.
    [116] M. Barak, Electrochemical Power Sources, Peter Peregrinus Ltd.,, 1980.
    [117] W. H. Kao and V. J. Weibel, "Electrochemical Oxidation of Manganese(II) at a Platinum Electrode," Journal of Applied Electrochemistry, vol. 22, pp. 21-27, 1992.
    [118] S. Nijjer, J. Thonstad, and G. M. Haarberg, "Oxidation of Manganese(II) and Reduction of Manganese Dioxide in Sulphuric Acid," Electrochimica Acta, vol. 46, pp. 395-399, 2000.
    [119] Z. Rogulski, H. Siwek, I. Paleska, and A. Czerwiński, "Electrochemical Behavior of Manganese Dioxide on a Gold Electrode," Journal of Electroanalytical Chemistry, vol. 543, pp. 175-185, 2003.
    [120] R. G. a. L. Selim, J.J., "Coulometric Titration with Higher Oxidation States of Manganese. Electrolytic Generation and Stability of +3 Manganese in Sulfuric Acid Media," Analytical Chimica Acta, vol. 21, pp. 536-544, 1959.
    [121] S. Rodrigues, Munichandraiah, N. and Shukla, A.K, "A Cyclic Voltammetric Study of the Kinetics and Mechanism of Electrodeposition of Manganese Dioxide," Journal of Applied Electrochemistry, vol. 28, pp. 1235-1241, 1998.
    [122] C. J. Clarke, Browning, G.J. and Donne, S.W, "An RDE and RRDE Study Into the Electrodeposition of Manganese Dioxide," Electrochimica Acta, vol. 51, pp. 5773-5784, 2006.
    [123] J. Y. Welsh, Electrochem. Technol. , vol. 504, 1967.
    [124] V. TJANDRAWAN, "The Role of Manganese in the Electrowinning of Copper and Zinc," 2010.
    [125] P. Ruetschi, "Cation-Vacancy Model for MnO2," Journal of The Electrochemical Society, vol. 131, pp. 2737-2744, 1984.
    [126] P. Ruetschi, "Influence of Cation Vacancies on the Electrode Potential of MnO¬2," Journal of The Electrochemical Society, vol. 135, pp. 2657-2663, 1988.
    [127] P. Ruetschi and R. Giovanoli, "The behaviour of MnO2 in strongly acidic solutions," Journal of Applied Electrochemistry, vol. 12, pp. 109-114, 1982.
    [128] G. Davies, Coordination Chem. Rev. 4, vol. 199, 1960.
    [129] W. C. M. J.A. Lee, F.L. Tye, J. , Electroanal. Chem, vol. 79, 1977.
    [130] W. C. M. J.A. Lee, F.L. Tye, J., J. Eelctroanal. Chem. , vol. 145, 1980.
    [131] O. J. Hao, A. P. Davies, and P. H. Chang, "Kinetics of Manganese (II) Oxidation with Chlorine," J. Environ. Eng, pp. 117, 359–374, 1991.
    [132] E. R. Mathews, " Iron and Manganese Removal by Free Residual Chlorination," J. Am. Water Works Assoc, vol. 39, pp. 680–686, 1947.
    [133] G. C. White, "Van Nostrand Reinhold, The Handbook of Chlorination, second ed, New York," 1986.
    [134] W. R. Knocke, Holhn, R.C., Sinsabangh, R.L., "Using Alternative Oxidants to Removal Dissolved Manganese from Waters Laden with Organics," J. Am. Water Works Assoc, vol. 79, pp. 75–79, 1987.
    [135] M. Deborde and U. von Gunten, "Reactions of Chlorine with Inorganic and Organic Compounds during Water Treatment—Kinetics and mechanisms: A critical review," Water Research, vol. 42, pp. 13-51, 2008.
    [136] W. a. M. Stumm, J. J. , "An Introduction Emphasising Chemical Equilibria in Natural Waters," Aquatic Chemistry, pp. 464-467, 1981.
    [137] Y. Wang and A. Stone, "The citric acid–MnIII,IV O2(birnessite) Reaction. Electron transfer, Complex Formation, and Autocatalytic Feedback," Geochimica et Cosmochimica Acta, vol. 70, pp. 4463-4476, 2006.
    [138] Y. Wang and A. T. Stone, "Reaction of MnIII,IV (hydr)oxides with Oxalic Zcid, Glyoxylic Acid, Phosphonoformic Acid, and Structurally-Related Organic Compounds," Geochimica et Cosmochimica Acta, vol. 70, pp. 4477-4490, 2006.
    [139] W. a. M. Stumm, J. J., "Chemical Equilibria and Rates in Natural Waters. 3rd ed," Aquatic chemistry, 1996.
    [140] W. a. W. Stumm, R. . Rev. Geophys, "Coordination Chemistry of Weathering - Kinetics of the Surface-Controlled Dissolution of Oxide Minerals," vol. 28, pp. 53-69, 1990.
    [141] W. Stumm, "Reactivity at the Mineral-Water Interface: Dissolution and Inhibition," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 120, pp. 143-166, 1997.
    [142] C. F. Lin and M. M. Benjamin, "Dissolution Kinetics of Minerals in the Presence of Sorbing and Complexing Ligands," Environmental Science & Technology, vol. 24, pp. 126-134, 1990.
    [143] W. Stumm, "Chemistry of the Solid-Water Interface: Processes at the Mineral-Water and Particle-Water Interface in Natural Systems," 1992.
    [144] A. T. Stone, "Reductive Dissolution of Manganese(III/Iv) Oxides by Substituted Phenols," Environmental Science & Technology, vol. 21, pp. 979-988, 1987.
    [145] K. L. a. S. Godtfredsen, A. T., "Solubilization of Manganese Dioxide-Bound Copper by Naturally Occurring Organic Compounds," Environ. Sci. Technol., vol. 28, pp. 1450-1458, 1994.
    [146] F. J. Beltrán, F. J. Rivas, and R. Montero-de-Espinosa, "A TiO2/Al2O3 Catalyst to Improve the Ozonation of Oxalic Acid in Water," Applied Catalysis B: Environmental, vol. 47, pp. 101-109, 2004.
    [147] M. Dukkancı and G. Gündüz, "Ultrasonic Degradation of Oxalic Acid in Aqueous Solutions," Ultrasonics Sonochemistry, vol. 13, pp. 517-522, 2006.
    [148] V. Iliev, D. Tomova, R. Todorovska, D. Oliver, L. Petrov, D. Todorovsky, and M. Uzunova-Bujnova, "Photocatalytic Properties of TiO2 Modified with Gold Nanoparticles in the Degradation of Oxalic Acid in Aqueous Solution," Applied Catalysis A: General, vol. 313, pp. 115-121, 2006.
    [149] N. Quici, M. E. Morgada, G. Piperata, P. Babay, R. T. Gettar, and M. I. Litter, "Oxalic Acid Destruction at High Concentrations by Combined Heterogeneous Photocatalysis and Photo-Fenton Processes," Catalysis Today, vol. 101, pp. 253-260, 2005.
    [150] N. Quici, M. E. Morgada, R. T. Gettar, M. Bolte, and M. I. Litter, "Photocatalytic Degradation of Citric Acid under Different Conditions: TiO2 Heterogeneous Photocatalysis Against Homogeneous Photolytic Processes Promoted by Fe(III) and H2O2," Applied Catalysis B: Environmental, vol. 71, pp. 117-124, 2007.
    [151] J. M. Meichtry, N. Quici, G. Mailhot, and M. I. Litter, "Heterogeneous Photocatalytic Degradation of Citric Acid over TiO2: II. Mechanism of Citric Acid Degradation," Applied Catalysis B: Environmental, vol. 102, pp. 555-562, 2011.
    [152] M. Chotkowski, Z. Rogulski, and A. Czerwiński, "Spectroelectrochemical Investigation of MnO2 Alectro-Generation and Alectro-Reduction in Acidic Media," Journal of Electroanalytical Chemistry, vol. 651, pp. 237-242, 2011.
    [153] Y. Ni, H. Meng, D. Chen, D. Sun, and H. Yu, "Preparation of IrO2+MnO2 Coating Anodes and Their Application in NaClO Production," Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material, vol. 15, pp. 461-467, 2008.
    [154] O. Scialdone, A. Galia, C. Guarisco, S. Randazzo, and G. Filardo, "Electrochemical Incineration of Oxalic Acid at Boron Doped Diamond Anodes: Role of Operative Parameters," Electrochimica Acta, vol. 53, pp. 2095-2108, 2008.
    [155] C. C. Comninellis and n. Guohua, Electrochemistry for the Environment, 2009.
    [156] N. A. a. B. B. David Dixon, L. S. a. T. H. Barry Chiswell, K. Craig, B. H. Geoff Hamilton, Camilla West, and R. Woolley, "The Removal of Manganese from Drinking Waters," Water Quality and Treatment, vol. Volume 26, 2006.
    [157] J. P. Rethinaraj and S. Visvanathan, "Anodes for the Preparation of EMD and Application of Manganese Dioxide Coated Anodes for Electrochemicals," Materials Chemistry and Physics, vol. 27, pp. 337-349, 1991.
    [158] M. Fryda, T. Matthée, S. Mulcahy, A. Hampel, L. Schäfer, and I. Tröster, "Fabrication and Application of Diachem® Alectrodes," Diamond and Related Materials, vol. 12, pp. 1950-1956, 2003.
    [159] D. Das, P. Samaddar, P. Sen, and K. Das, "Oxidation of Some Aliphatic Polyols on Anodically Deposited MnO2," Journal of Applied Electrochemistry, vol. 38, pp. 743-749, 2008.
    [160] H. Adelkhani and M. Ghaemi, "Influence of the Solution pH on the Nanostructural, and Electrochemical Performance of Electrolytic Manganese Dioxide," Journal of Alloys and Compounds, vol. 481, pp. 446-449, 2009.
    [161] K. R. Prasad and N. Miura, "Potentiodynamically Deposited Nanostructured Manganese Dioxide as Electrode Material for Electrochemical Redox Supercapacitors," Journal of Power Sources, vol. 135, pp. 354-360, 2004.
    [162] M. S. El-Deab, M. I. Awad, A. M. Mohammad, and T. Ohsaka, "Enhanced Water Electrolysis: Electrocatalytic Generation of Oxygen Gas at Manganese Oxide Nanorods Modified Electrodes," Electrochemistry Communications, vol. 9, pp. 2082-2087, 2007.
    [163] M. S. El-Deab and T. Ohsaka, "Manganese Oxide Nanoparticles Electrodeposited on Platinum Are Superior to Platinum for Oxygen Reduction," Angewandte Chemie International Edition, vol. 45, pp. 5963-5966, 2006.
    [164] C. Comninellis and J. P. Petitpierre, "Electrochemical oxidation of Mn(II) to MnO4 in the Presence of Ag(I) catalyst," Electrochimica Acta, vol. 36, pp. 1363-1365, 1991.
    [165] Y.Paik, J.P.Osegovic, F.Wang, and W. B. a. C.P.Grey, Chemical society, vol. 123, 2001.
    [166] E. Hapeshi and C. R. Theocharis, "Preparation and Characterization of Nanoporous Solids with Composition CexMn1−xO2−y with x Values 0 to 1," in Studies in Surface Science and Catalysis. vol. Volume 160, F. R.-R. J. R. P.L. Llewellyn and N. Seaton, Eds., ed: Elsevier, 2007, pp. 645-650.
    [167] S. L. Suib, "Porous Manganese Oxide Octahedral Molecular Sieves and Octahedral Layered Materials," Accounts of Chemical Research, vol. 41, pp. 479-487, 2008.
    [168] K. Matsuki, T. Endo, and H. Kamada, "SEM Studies of Electrolytic Manganese Dioxide," Electrochimica Acta, vol. 29, pp. 983-993, 1984.
    [169] Z. Li, Y. Ding, Y. Xiong, and Y. Xie, "Rational Growth of Various α-MnO2 Hierarchical Structures and β-MnO2 Nanorods via a Homogeneous Catalytic Route," Crystal Growth & Design, vol. 5, pp. 1953-1958, 2005.
    [170] P. Yu, X. Zhang, D. Wang, L. Wang, and Y. Ma, "Shape-Controlled Synthesis of 3D Hierarchical MnO2 Nanostructures for Electrochemical Supercapacitors," Crystal Growth & Design, vol. 9, pp. 528-533, 2008.
    [171] T. Ohzuku, H. Higashimura, and T. Hirai, "XRD Studies on the Conversion from Several Manganese Oxides to -manganese Dioxide during Acid Digestion in MnSO4H2SO4 System," Electrochimica Acta, vol. 29, pp. 779-785, 1984.
    [172] M. Cerón-Rivera, M. M. Dávila-Jiménez, and M. P. Elizalde-González, "Degradation of the Textile Dyes Basic Yellow 28 and Reactive Black 5 using Diamond and Metal Alloys Electrodes," Chemosphere, vol. 55, pp. 1-10, 2004.
    [173] S. Balaji, S. J. Chung, M. Matheswaran, K. V. Vasilivich, and I. S. Moon, "Destruction of Organic Pollutants by Cerium(IV) MEO Process: A Study on the Influence of Process Conditions for EDTA Mineralization," Journal of Hazardous Materials, vol. 150, pp. 596-603, 2008.
    [174] C. Bock and B. MacDougall, "The Anodic Oxidation of p-Benzoquinone and Maleic Acid," Journal of The Electrochemical Society, vol. 146, pp. 2925-2932, 1999.
    [175] D. Das, P. Sen, and K. Das, "Electrodeposited MnO2; as Electrocatalyst for Carbohydrate Oxidation," Journal of Applied Electrochemistry, vol. 36, pp. 685-690, 2006.
    [176] Adelkhani.H, Ghaemi.M, and Jafari.S.M, "Novel Nanostructured MnO2 Prepared by Pulse Electrodeposition: Characterization and Electrokinetics," J.Mater, vol. Vol.24, pp. 857-862, 2008.
    [177] K. Izumiya, E. Akiyama, H. Habazaki, N. Kumagai, A. Kawashima, and K. Hashimoto, "Anodically Deposited Manganese Oxide and Manganese–Tungsten Oxide Electrodes for Oxygen Evolution from Seawater," Electrochimica Acta, vol. 43, pp. 3303-3312, 1998.
    [178] V. S. Kolosnitsyn, E. A. Minnikhanova, E. V. Karaseva, Y. K. Dmitriev, and M. M. Muratov, "Possibility of Depositing Electrolytic Manganese Dioxide onto Titanium Anodes from Manganese Chloride Solutions," Russian Journal of Applied Chemistry, vol. 78, pp. 891-896, 2005.
    [179] R. Andreozzi, A. Insola, V. Caprio, R. Marotta, and V. Tufano, "The use of Manganese Dioxide as a Heterogeneous Catalyst for Oxalic Acid Ozonation in Aqueous Solution," Applied Catalysis A: General, vol. 138, pp. 75-81, 1996.
    [180] R. Andreozzi, R. Marotta, and R. Sanchirico, "Manganese-Catalysed Ozonation of Glyoxalic Acid in Aqueous Solutions," Journal of Chemical Technology & Biotechnology, vol. 75, pp. 59-65, 2000.
    [181] A. J. R. Luna, L. O. A.; Melo, D. M. A.; Benachour, M.; Sousa, J. F. de, "Total Catalytic Wet Oxidation of Phenol and its Chlorinated Derivates with MnO2/CeO2 Catalyst in a Slurry," Brazilian Journal of Chemical Engineering vol. 26, pp. 493-502, 2009.
    [182] G. Foti, D. Gandini, and C. Comninellis, Curr. Top. Electrochem., vol. 5, p. 71, 1997.
    [183] C. A. Martínez-Huitle, M. A. Quiroz, C. Comninellis, S. Ferro, and A. D. Battisti, "Electrochemical Incineration of Chloranilic Acid using Ti/IrO2, Pb/PbO2 and Si/BDD Electrodes," Electrochimica Acta, vol. 50, pp. 949-956, 2004.
    [184] O. Simond, V. Schaller, and C. Comninellis, "Theoretical Model for the Anodic Oxidation of Organics on Metal Oxide Electrodes," Electrochimica Acta, vol. 42, pp. 2009-2012, 1997.
    [185] A. G.Xyla, B. Sulzberger, G. W. Luther, and J. G.Hering, "Reductive Dissolution of Manganese (III,IV) (Hydr)oxides by Oxalate: The effect of pH and Light," Water Resources and Pollution Control, 1991.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE