簡易檢索 / 詳目顯示

研究生: 蕭郁樺
Xiao, Yu-Hua
論文名稱: 製備羧酸化幾丁聚醣/磷羥基灰石奈米材料於膠態電解質填充物之研究
The preparation of carboxymethyl chitosan/hydroxyapatite nanomaterial as filler in gel electrolyte
指導教授: 溫添進
Wen, Ten-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 80
中文關鍵詞: 羧酸化幾丁聚醣磷羥基灰石膠態電解質填充物
外文關鍵詞: carboxymethyl chitosan, hydroxyapatite, gel electrolyte, filler
相關次數: 點閱:72下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今環保意識抬頭,對於環境友善的生物高分子成為了電解質材料的新選擇,這對於環境的永續發展來說是非常有幫助的。幾丁聚醣大量 、易取得也易改質,可作為膠態電解質材料。 而膠態電解質雖已集結固態和液態的優點,但離子導電度還能有所提升,因此本研究利用改質幾丁聚醣以及添加填充物來提升離子導電度,期望能研究出環保的新型超級電容器。
    在鹼性環境下透過水熱法誘導礦化磷羥基灰石,生成 hydroxyapatite(HA),並利用不同接枝率的羧酸化幾丁聚醣 (CCS1、 CCS2)作為添加劑生成 CCS1-HA、CCS2-HA。 SEM中觀察到HA為較粗較長的奈米顆粒,而 CCS1-HA、 CCS2-HA轉變為較短較細的奈米顆粒 ,平均粒徑長度可以從 131.5nm降至 46.33nm。 TEM中觀察到 HA的晶格原子排列整齊,而 CCS1-HA、 CCS2-HA原子出現了扭曲和錯位,這兩方面都表明了羧酸根對於晶體的生長抑制。
    將 HA、 CCS1-HA、 CCS2-HA作為 CCS高分子電解質膜的填充物。以探討加入填料的 CCS電解質膜在超電容中之電化學表現。結果表明,加入填料後在Cyclic voltammogram(CV)、 Galvanostatic charge discharge(GCD)、 Electrochemical impedance spectroscopy(EIS)電化學方法下電化學表現皆有提升。其中在 0.45A/g電流密度下, CCS2-HA有最大的電容 125.14Fg-1以及能量密度 14.08WKg-1。

    Hydroxyapatite (HA) was prepared with hydrothermal method within alkaline environment. CCS1-HA and CCS2-HA were induced by using carboxymethyl chitosan (CCS1 and CCS2) with different grafting ratio as defect inducer. From SEM observation, HA was thick and long nanorods, while CCS1-HA and CCS2-HA were short and thin nanorods. From TEM analysis, the lattice atoms of HA were neatly aligned, while the atoms of CCS1-HA and CCS2-HA showed distortion and misalignment, indicating the inhibition of crystal growth by carboxyl group along CCS1 and CCS2.
    HA, CCS1-HA, and CCS2-HA were used as fillers for the CCS polymer electrolyte. The electrochemical performance of CCS electrolyte with fillers in supercapacitance was investigated via cyclic voltammogram, galvanostatic charging/discharging, and electrochemical impedance spectroscopy methods. Among them, CCS2-HA has the largest capacitance of 125.14Fg-1 and energy density of 14.08WKg-1 at current density of 0.45A/g.

    摘要 I EXTEND ABSTRACT II 誌謝 IX 目錄 X 圖目錄 XIV 表目錄 XVII 符號 XVIII 一. 緒論 1 1-1前言 1 1-2研究動機及目的 2 二. 文獻回顧 3 2-1幾丁聚醣 3 2-1-1幾丁聚醣的介紹及應用 3 2-1-2幾丁聚醣的製備 4 2-1-3幾丁聚醣的化學修飾 5 2-2磷羥基灰石 9 2-2-1磷羥基灰石的介紹及應用 9 2-2-2磷羥基灰石合成方法 10 2-2-2-1乾式製程 10 2-2-2-2濕式製程 11 2-2-2-3高溫法 13 2-2-3添加劑合成之磷羥基灰石 15 2-2-3-1鈣螯合劑 15 2-2-3-2表面活性劑 16 2-2-3-3高分子聚合物 17 2-3超級電容器 18 2-3-1超級電容器的介紹及應用 18 2-3-2 超級電容器的結構 22 2-3-2-1 儲能機制分類 22 2-3-2-2 電雙層電容器 23 2-3-2-3無機填充物之傳導機制 25 2-4電化學分析方法 29 2-4-1循環伏安法(CV) 29 2-4-2定電流充放電(GCD) 30 2-4-3電化學阻抗分析(EIS) 31 三. 實驗方法 35 3-1藥品 35 3-2 儀器設備 36 3-3樣品製備 36 3-3-1幾丁聚醣的改質 36 3-3-2磷羥基灰石合成 37 3-3-3高分子電解質膜製備38 3-3-4電極前處理 39 3-3-5活性碳電極製備 39 3-3-6元件組裝 39 3-4材料分析 40 3-4-1傅立葉紅外光譜(FTIR) 40 3-4-2核磁共振光譜儀(NMR) 40 3-4-3 X-Ray繞射分析儀(XRD) 41 3-4-4高解析場發射掃描電子顯微鏡(HR-SEM) 41 3-4-5高解析穿透電子顯微鏡(HR-TEM) 42 3-4-6熱重分析儀(TGA) 42 3-4-7差示掃描量熱分析儀(DSC) 42 3-5電化學分析 43 3-5-1循環伏安法(CV) 43 3-5-2定電流充放電(GCD) 43 3-5-3交流阻抗法(EIS) 43 四. 結果與討論 45 4-1氫氧化鈉濃度對接枝率的影響 45 4-1-1傅立葉紅外光譜(FTIR) 45 4-1-2核磁共振光譜儀(H1-NMR) 47 4-1-3 熱重分析(TGA) 50 4-2幾丁聚醣/磷羥基灰石奈米材料 51 4-2-1傅立葉紅外光譜(FTIR) 51 4-2-2 X-Ray繞射分析(XRD) 52 4-2-3形貌與粒徑分佈 53 4-2-4晶粒尺寸與結晶度 55 4-2-5晶面與晶格缺陷 58 4-3磷羥基灰石填充物應用於膠態電解質 62 4-3-1示差掃描熱分析(DSC) 62 4-3-2填充物濃度 63 4-3-3活化能 64 4-3-4 交流阻抗法(EIS) 65 4-3-5循環伏安法(CV) 66 4-3-6 定電流充放電(GCD) 68 4-3-7循環壽命測試(Cycle Life) 72 五. 結論與未來工作 73 六.參考文獻 75

    [1] V. P. Hoang Huy, S. So, and J. Hur, "Inorganic Fillers in Composite Gel Polymer Electrolytes for High-Performance Lithium and Non-Lithium Polymer Batteries," Nanomaterials, vol. 11, no. 3, p. 614, 2021.
    [2] J. Hassoun and B. Scrosati, "Advances in anode and electrolyte materials for the progress of lithium-ion and beyond lithium-ion batteries," Journal of The Electrochemical Society, vol. 162, no. 14, p. A2582, 2015.
    [3] K. S. Ngai, S. Ramesh, K. Ramesh, and J. C. Juan, "A review of polymer electrolytes: fundamental, approaches and applications," Ionics, vol. 22, no. 8, pp. 1259-1279, 2016.
    [4] G. Crini, "Historical review on chitin and chitosan biopolymers," Environmental Chemistry Letters, vol. 17, no. 4, pp. 1623-1643, 2019.
    [5] M. Rinaudo, "Chitin and chitosan: Properties and applications," Progress in polymer science, vol. 31, no. 7, pp. 603-632, 2006.
    [6] J. A. Jennings and J. D. Bumgardner, Chitosan Based Biomaterials Volume 1: Fundamentals. Woodhead Publishing, 2016.
    [7] R. Jayakumar, N. Nwe, S. Tokura, and H. Tamura, "Sulfated chitin and chitosan as novel biomaterials," International journal of biological macromolecules, vol. 40, no. 3, pp. 175-181, 2007.
    [8] Z. Shariatinia, "Pharmaceutical applications of chitosan," Advances in colloid and interface science, vol. 263, pp. 131-194, 2019.
    [9] S.-i. Aiba, "Preparation of N-acetylchitooligosaccharides by hydrolysis of chitosan with chitinase followed by N-acetylation," Carbohydrate research, vol. 265, no. 2, pp. 323-328, 1994.
    [10] D. Kafetzopoulos, A. Martinou, and V. Bouriotis, "Bioconversion of chitin to chitosan: purification and characterization of chitin deacetylase from Mucor rouxii," Proceedings of the National Academy of Sciences, vol. 90, no. 7, pp. 2564-2568, 1993.
    [11] H. K. No and S. P. Meyers, "Preparation and characterization of chitin and chitosan—a review," Journal of aquatic food product technology, vol. 4, no. 2, pp. 27-52, 1995.
    [12] R. A. Muzzarelli, "Carboxymethylated chitins and chitosans," Carbohydrate polymers, vol. 8, no. 1, pp. 1-21, 1988.
    [13] N. Nishi, A. Ebina, S.-i. Nishimura, A. Tsutsumi, O. Hasegawa, and S. Tokura, "Highly phosphorylated derivatives of chitin, partially deacetylated chitin and chitosan as new functional polymers: preparation and characterization," International Journal of Biological Macromolecules, vol. 8, no. 5, pp. 311-317, 1986.
    [14] G. CÁRDENAS, G. CABRERA, E. TABOADA, and M. RINAUDO, "Synthesis and characterization of chitosan alkyl phosphate," Journal of the Chilean Chemical Society, vol. 51, no. 1, pp. 815-820, 2006.
    [15] C. Zhang, Q. Ping, H. Zhang, and J. Shen, "Preparation of N-alkyl-O-sulfate chitosan derivatives and micellar solubilization of taxol," Carbohydrate Polymers, vol. 54, no. 2, pp. 137-141, 2003.
    [16] M. Sugimoto, M. Morimoto, H. Sashiwa, H. Saimoto, and Y. Shigemasa, "Preparation and characterization of water-soluble chitin and chitosan derivatives," Carbohydrate polymers, vol. 36, no. 1, pp. 49-59, 1998.
    [17] S. V. Dorozhkin, "Nanodimensional and nanocrystalline apatites and other calcium orthophosphates in biomedical engineering, biology and medicine," Materials, vol. 2, no. 4, pp. 1975-2045, 2009.
    [18] G. Ma and X. Y. Liu, "Hydroxyapatite: hexagonal or monoclinic?," Crystal Growth and Design, vol. 9, no. 7, pp. 2991-2994, 2009.
    [19] H. Kim, R. P. Camata, S. Chowdhury, and Y. K. Vohra, "In vitro dissolution and mechanical behavior of c-axis preferentially oriented hydroxyapatite thin films fabricated by pulsed laser deposition," Acta biomaterialia, vol. 6, no. 8, pp. 3234-3241, 2010.
    [20] K. Lin and J. Chang, "Structure and properties of hydroxyapatite for biomedical applications," in Hydroxyapatite (HAp) for biomedical applications: Elsevier, 2015, pp. 3-19.
    [21] A. Haider, S. Haider, S. S. Han, and I.-K. Kang, "Recent advances in the synthesis, functionalization and biomedical applications of hydroxyapatite: a review," Rsc Advances, vol. 7, no. 13, pp. 7442-7458, 2017.
    [22] S. Pramanik, A. K. Agarwal, K. Rai, and A. Garg, "Development of high strength hydroxyapatite by solid-state-sintering process," Ceramics International, vol. 33, no. 3, pp. 419-426, 2007.
    [23] H. G. Zhang and Q. Zhu, "Preparation of fluoride-substituted hydroxyapatite by a molten salt synthesis route," Journal of Materials Science: Materials in Medicine, vol. 17, no. 8, pp. 691-695, 2006.
    [24] B. Nasiri-Tabrizi, P. Honarmandi, R. Ebrahimi-Kahrizsangi, and P. Honarmandi, "Synthesis of nanosize single-crystal hydroxyapatite via mechanochemical method," Materials Letters, vol. 63, no. 5, pp. 543-546, 2009.
    [25] C. Silva, M. Graça, M. Valente, and A. Sombra, "Crystallite size study of nanocrystalline hydroxyapatite and ceramic system with titanium oxide obtained by dry ball milling," Journal of materials science, vol. 42, no. 11, pp. 3851-3855, 2007.
    [26] M. Fathi and E. M. Zahrani, "Mechanical alloying synthesis and bioactivity evaluation of nanocrystalline fluoridated hydroxyapatite," Journal of Crystal Growth, vol. 311, no. 5, pp. 1392-1403, 2009.
    [27] P. Honarmandi, P. Honarmandi, A. Shokuhfar, B. Nasiri-Tabrizi, and R. Ebrahimi-Kahrizsangi, "Milling media effects on synthesis, morphology and structural characteristics of single crystal hydroxyapatite nanoparticles," Advances in Applied Ceramics, vol. 109, no. 2, pp. 117-122, 2010.
    [28] J. L. Sturgeon and P. W. Brown, "Effects of carbonate on hydroxyapatite formed from CaHPO 4 and Ca 4 (PO 4) 2 O," Journal of Materials Science: Materials in Medicine, vol. 20, no. 9, pp. 1787-1794, 2009.
    [29] H. Park, D. Baek, Y. Park, S. Yoon, and R. Stevens, "Thermal stability of hydroxyapatite whiskers derived from the hydrolysis of α-TCP," Journal of materials science, vol. 39, no. 7, pp. 2531-2534, 2004.
    [30] H. Ito, Y. Oaki, and H. Imai, "Selective synthesis of various nanoscale morphologies of hydroxyapatite via an intermediate phase," Crystal Growth and Design, vol. 8, no. 3, pp. 1055-1059, 2008.
    [31] K. Zhu, K. Yanagisawa, A. Onda, K. Kajiyoshi, and J. Qiu, "Morphology variation of cadmium hydroxyapatite synthesized by high temperature mixing method under hydrothermal conditions," Materials chemistry and physics, vol. 113, no. 1, pp. 239-243, 2009.
    [32] B. Jokić, M. Mitrić, V. Radmilović, S. Drmanić, R. Petrović, and D. Janaćković, "Synthesis and characterization of monetite and hydroxyapatite whiskers obtained by a hydrothermal method," Ceramics International, vol. 37, no. 1, pp. 167-173, 2011.
    [33] G. Zhang, J. Chen, S. Yang, Q. Yu, Z. Wang, and Q. Zhang, "Preparation of amino-acid-regulated hydroxyapatite particles by hydrothermal method," Materials letters, vol. 65, no. 3, pp. 572-574, 2011.
    [34] D. K. Lee, J. Y. Park, M. R. Kim, and D.-J. Jang, "Facile hydrothermal fabrication of hollow hexagonal hydroxyapatite prisms," CrystEngComm, vol. 13, no. 17, pp. 5455-5459, 2011.
    [35] I. S. Neira, F. Guitián, T. Taniguchi, T. Watanabe, and M. Yoshimura, "Hydrothermal synthesis of hydroxyapatite whiskers with sharp faceted hexagonal morphology," Journal of materials science, vol. 43, no. 7, pp. 2171-2178, 2008.
    [36] M. Aghayan and M. Rodríguez, "Influence of fuels and combustion aids on solution combustion synthesis of bi-phasic calcium phosphates (BCP)," Materials Science and Engineering: C, vol. 32, no. 8, pp. 2464-2468, 2012.
    [37] S. Sasikumar and R. Vijayaraghavan, "Effect of metal-ion-to-fuel ratio on the phase formation of bioceramic phosphates synthesized by self-propagating combustion," Science and technology of advanced materials, vol. 9, no. 3, p. 035003, 2008.
    [38] R. A. Ayers et al., "Combustion synthesis of porous biomaterials," Journal of Biomedical Materials Research Part A, vol. 81, no. 3, pp. 634-643, 2007.
    [39] R. Trommer, L. Santos, and C. Bergmann, "Nanostructured hydroxyapatite powders produced by a flame-based technique," Materials Science and Engineering: C, vol. 29, no. 6, pp. 1770-1775, 2009.
    [40] S. K. Ghosh, S. Pal, S. K. Roy, S. K. Pal, and D. Basu, "Modelling of flame temperature of solution combustion synthesis of nanocrystalline calcium hydroxyapatite material and its parametric optimization," Bulletin of Materials Science, vol. 33, no. 4, pp. 339-350, 2010.
    [41] S. K. Ghosh, S. K. Roy, B. Kundu, S. Datta, and D. Basu, "Synthesis of nano-sized hydroxyapatite powders through solution combustion route under different reaction conditions," Materials Science and Engineering: B, vol. 176, no. 1, pp. 14-21, 2011.
    [42] M. Aizawa, T. Hanazawa, K. Itatani, F. Howell, and A. Kishioka, "Characterization of hydroxyapatite powders prepared by ultrasonic spray-pyrolysis technique," Journal of materials science, vol. 34, no. 12, pp. 2865-2873, 1999.
    [43] J. S. Cho and Y. C. Kang, "Nano-sized hydroxyapatite powders prepared by flame spray pyrolysis," Journal of alloys and compounds, vol. 464, no. 1-2, pp. 282-287, 2008.
    [44] K.-S. Hwang, K.-O. Jeon, Y.-S. Jeon, and B.-H. Kim, "Hydroxyapatite forming ability of electrostatic spray pyrolysis derived calcium phosphate nano powder," Journal of Materials Science: Materials in Medicine, vol. 18, no. 4, pp. 619-622, 2007.
    [45] N. Wakiya et al., "Preparation of hydroxyapatite–ferrite composite particles by ultrasonic spray pyrolysis," Materials Science and Engineering: B, vol. 173, no. 1-3, pp. 195-198, 2010.
    [46] K. Itatani, T. Tsugawa, T. Umeda, Y. Musha, I. J. Davies, and S. Koda, "Preparation of submicrometer-sized porous spherical hydroxyapatite agglomerates by ultrasonic spray pyrolysis technique," Journal of the Ceramic Society of Japan, vol. 118, no. 1378, pp. 462-466, 2010.
    [47] H. Arce, M. L. Montero, A. Sáenz, and V. M. Castaño, "Effect of pH and temperature on the formation of hydroxyapatite at low temperatures by decomposition of a Ca–EDTA complex," Polyhedron, vol. 23, no. 11, pp. 1897-1901, 2004.
    [48] P. Kanchana and C. Sekar, "EDTA assisted synthesis of hydroxyapatite nanoparticles for electrochemical sensing of uric acid," Materials Science and Engineering: C, vol. 42, pp. 601-607, 2014.
    [49] K. Kandori, N. Horigami, A. Yasukawa, and T. Ishikawa, "Texture and formation mechanism of fibrous calcium hydroxyapatite particles prepared by decomposition of calcium–EDTA chelates," Journal of the American Ceramic Society, vol. 80, no. 5, pp. 1157-1164, 1997.
    [50] A. Lak et al., "Self‐Assembly of Dandelion‐Like Hydroxyapatite Nanostructures Via Hydrothermal Method," Journal of the American Ceramic Society, vol. 91, no. 10, pp. 3292-3297, 2008.
    [51] Y. Wang, S. Zhang, K. Wei, N. Zhao, J. Chen, and X. Wang, "Hydrothermal synthesis of hydroxyapatite nanopowders using cationic surfactant as a template," Materials Letters, vol. 60, no. 12, pp. 1484-1487, 2006.
    [52] Y. Wang, J. Chen, K. Wei, S. Zhang, and X. Wang, "Surfactant-assisted synthesis of hydroxyapatite particles," Materials Letters, vol. 60, no. 27, pp. 3227-3231, 2006.
    [53] A. Wang et al., "Size-controlled synthesis of hydroxyapatite nanorods in the presence of organic modifiers," Materials Letters, vol. 61, no. 10, pp. 2084-2088, 2007.
    [54] A. J. Nathanael, Y. H. Seo, and T. H. Oh, "PVP assisted synthesis of hydroxyapatite nanorods with tunable aspect ratio and bioactivity," Journal of Nanomaterials, vol. 2015, 2015.
    [55] A. Zhu, Y. Lu, Y. Si, and S. Dai, "Frabicating hydroxyapatite nanorods using a biomacromolecule template," Applied Surface Science, vol. 257, no. 8, pp. 3174-3179, 2011.
    [56] J. Ho, T. R. Jow, and S. Boggs, "Historical introduction to capacitor technology," IEEE Electrical Insulation Magazine, vol. 26, no. 1, pp. 20-25, 2010.
    [57] W. Raza et al., "Recent advancements in supercapacitor technology," Nano Energy, vol. 52, pp. 441-473, 2018.
    [58] J. Libich, J. Máca, J. Vondrák, O. Čech, and M. Sedlaříková, "Supercapacitors: Properties and applications," Journal of Energy Storage, vol. 17, pp. 224-227, 2018.
    [59] Z.-S. Wu, X. Feng, and H.-M. Cheng, "Recent advances in graphene-based planar micro-supercapacitors for on-chip energy storage," National Science Review, vol. 1, no. 2, pp. 277-292, 2014.
    [60] H. Du, X. Lin, Z. Xu, and D. Chu, "Electric double-layer transistors: a review of recent progress," Journal of Materials Science, vol. 50, no. 17, pp. 5641-5673, 2015.
    [61] X. Cheng, J. Pan, Y. Zhao, M. Liao, and H. Peng, "Gel polymer electrolytes for electrochemical energy storage," Advanced Energy Materials, vol. 8, no. 7, p. 1702184, 2018.
    [62] P. F. Ortega, J. P. C. Trigueiro, G. G. Silva, and R. L. Lavall, "Improving supercapacitor capacitance by using a novel gel nanocomposite polymer electrolyte based on nanostructured SiO2, PVDF and imidazolium ionic liquid," Electrochimica Acta, vol. 188, pp. 809-817, 2016.
    [63] C.-S. Lim, K. Teoh, C.-W. Liew, and S. Ramesh, "Capacitive behavior studies on electrical double layer capacitor using poly (vinyl alcohol)–lithium perchlorate based polymer electrolyte incorporated with TiO2," Materials Chemistry and physics, vol. 143, no. 2, pp. 661-667, 2014.
    [64] R. Arunkumar, R. S. Babu, and M. U. Rani, "Investigation on Al 2 O 3 doped PVC–PBMA blend polymer electrolytes," Journal of Materials Science: Materials in Electronics, vol. 28, no. 4, pp. 3309-3316, 2017.
    [65] I. Streeter, G. G. Wildgoose, L. Shao, and R. G. Compton, "Cyclic voltammetry on electrode surfaces covered with porous layers: an analysis of electron transfer kinetics at single-walled carbon nanotube modified electrodes," Sensors and Actuators B: Chemical, vol. 133, no. 2, pp. 462-466, 2008.
    [66] C.-W. Liew, S. Ramesh, and A. Arof, "Characterization of ionic liquid added poly (vinyl alcohol)-based proton conducting polymer electrolytes and electrochemical studies on the supercapacitors," international journal of hydrogen energy, vol. 40, no. 1, pp. 852-862, 2015.
    [67] B.-Y. Chang and S.-M. Park, "Electrochemical impedance spectroscopy," Annual Review of Analytical Chemistry, vol. 3, pp. 207-229, 2010.
    [68] Wikipedia contributors, "Euler's formula," in Wikipedia, The Free Encyclopedia., ed.
    [69] A. J. Bard and L. R. Faulkner, "Fundamentals and applications," Electrochemical Methods, vol. 2, no. 482, pp. 580-632, 2001.
    [70] O. Dogan, M. ÖNER, and O. Cinel, "The inhibitory effects of inulin biopolymers on the seeded growth of hydroxyapatite," Journal of the Ceramic Society of Japan, vol. 118, no. 1379, pp. 579-586, 2010.
    [71] G. Williamson and W. Hall, "X-ray line broadening from filed aluminium and wolfram," Acta metallurgica, vol. 1, no. 1, pp. 22-31, 1953.

    下載圖示 校內:2024-09-01公開
    校外:2024-09-01公開
    QR CODE