| 研究生: |
黃馨怡 Huang, Shin-Yi |
|---|---|
| 論文名稱: |
穿透性蛋白傳送系統的功能與特性分析 Characterization and functional analysis of a delivery system mediated by protein transduction domain |
| 指導教授: |
陳宗嶽
Chen, Tzong-Yueh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技研究所 Institute of Biotechnology |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 疫苗 、基因治療 、基因輸送 、DNA輸送載體 |
| 外文關鍵詞: | gene therapy, vaccine, DNA delivery vehicle, gene delivery |
| 相關次數: | 點閱:88 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
當要進行基因改造,或外來生物材料進入生物體時;例如:DNA疫苗或基因治療等,都需藉由外在物理、化學和生物性物質或精密儀器的協助。而其中DNA疫苗為1990年代新興的方法,不但可設計所要的特定蛋白抗原,且能有效的引起細胞性,以及體液性的免疫反應,形成長時間的保護作用。然而DNA疫苗要發揮功效,至少必須先突破細胞膜和核膜這兩道屏障,才能使DNA能經轉錄、轉譯,產生抗原蛋白,引起免疫反應。所以發展一個無細胞種類、無DNA序列、DNA構形等限制的運送DNA系統,是很重要的。近年來的研究中提到,帶正電的胜肽能有效穿透細胞膜,而這些胜肽都與protein transduction domain (PTD)有相關性,提供了外來物質輸送到活體細胞,或體外細胞的可能性。在此,我們分三個方面,來進行輸送蛋白的功能和特性分析。就保存而言:融合蛋白Pep-1-TP在pH值7±0.5左右的緩衝溶液中,置於4℃、-20℃、-80℃環境下,至少能穩定保存六個月,無明顯降解現象。而在轉染哺乳類細胞所需的37℃下,24小時後,仍有結合的能力。再者:從膠體延滯分析的結果可知道,Pep-1-TP和外來質體DNA結合是有特異性的,不受限於DNA大小(3kb~8kb)。最後,In vitro實驗方面,從螢光顯微鏡下觀察所表現的綠螢光蛋白,來判斷傳送情形。結果顯示,Pep-1-TP:質體DNA-EGF P-N1,在莫耳濃度(molar ratio)20:1下轉染細胞,有最佳的傳送效率。而且,傳送效率也會受到細胞株種類的影響。在融合蛋白對於細胞株的傷害方面,藉由比色法分析(MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyl tetrazolium bromide, based)得知,Pep-1-TP對細胞的毒性,相較於市售脂質體小。In vivo實驗方面,以母小鼠為實驗動物,依照莫耳濃度20:1混合的Pep-1-TP:pCMV-Mx-EGFP-N1,進行肌肉注射法(muscular injection, i.m.)。每隔兩週再注射一次,共重複兩次,收集鼠血清,進行酵素連結免疫吸收分析(enzyme-linked immunosorbent assay, ELISA) 。結果可知,Pep-1-TP在初次注射時,的確有協助外來質體DNA傳送到細胞內,然後引起動物自身的免疫反應。 因此,對於外來具生物活性材料的傳送,也許是快速且安全的方法。
When you proceed to genetically modified organisms researches or foreign biological materials delivered studies; such as DNA vaccines or gene therapies, it’s essential that external physicals or chemicals means, biological vectors or precision instruments. A DNA vaccine being invented around 1990, it can induce cellular and humoral immunity and you can design the DNA sequence for your wanted by this way. However, a DNA vaccine must surmount two barriers, membranes and nuclear membranes, at least, thus DNA can be transcribed and translated. Therefore, it’s important to develop a DNA delivery system without cell types, DNA sequence and size. In recent researches, cationic peptides which can transfer to cells are related to protein transduction domain. It’s potential that foreign materials are delivered to cells in vitro or in vivo by this mean. Therefore, we experimented with functional and characteristic assays of the delivered protein in three aspects. Firstly, about storage, keeping in 4℃, -20℃, -80℃ refrigerators, fusion protein, Pep-1-TP, in pH7 buffer could be stable without significant degeneration at least in six months. And, we treated Pep-1-TP in a 37℃ environment where it transfer to mammalian cell lines and could still keep its binding ability with plasmids after a treated period of 24hrs. Besides, according to gel retardation assays, Pep-1-TP bound specifically with foreign plasmid DNA and without the size of it. Finally, by a fluorescent microscopy for observations, it was the best delivery efficiency as we proceed to the delivery experiments in vitro with the molar ratio of Pep-1-TP: plamid-EGFP-N1 of 20:1. In addition to, the cytotoxicity of Pep-1-TP to cell lines was lower than the commercial lipofectamine. In vitro, distinguish delivery results: the amounts of GFP were determined by a fluorescent microscopy. It’s the best delivery efficiency of transferring to cells by the mixture of molar ratio of Pep-1-TP: plasmid DNA-EGFP-N1 of 20:1. Furthermore, the delivery efficiency was related to cell lines. A cytotoxicity of the fusion protein, Pep-1-TP, was lower than commercial lipofectamine according to colorimetry assay (MTT based) results. In vivo, injecting a molar ratio of Pep-1-TP: pCMV-Mx-EGFP-N1 of 20:1 into female mice by using muscular injection, collecting serum from mice for the experiments, enzyme-linked immunosorbent assay (ELISA), the results showed that Pep-1-TP certainly promoted the delivery of foreign plasmid DNA into cells with the first vaccination and induced animals’ autoimmunity. Therefore, it may be a fast and safely method to delivery biologically active cargo molecules.
林素卿。開發核酸穿透式運輸系統。國立成功大學生物科技研究所碩士論文,1-57。(2003)。
Alsner, J., Svejstrup, J.Q., Kjeldsen, E., Sorensen, B.S., and Westergaard, O. Identifcation of an N-terminal domain of eukaryotic DNA topoisomerase I dispensable for catalytic activity but essential for in vivo function. J. Biol. Chem. 267, 12408–12411 (1992).
Blin, N., and Stafford, D.W. A general method for isolation of high molecular weight DNA from eukaryotes. Nucleic Acids Res. 3, 2303-2308 (1976).
Birnboim, H.C. and Doly, J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7, 1513-1523 (1979).
Bharti, A.K., Olson, M.O., Kufe, D.W., and Rubin, E.H. Identifcation of a nucleolin binding site in human topoisomerase I. J. Biol. Chem. 271, 1993-1997 (1996).
Barry, M.A. and Johnston, S.A. Biological features of genetic immunization. Vaccine 15, 788-791 (1997).
Baca-Estrada, M.E., Foldvari, M., Babiuk, S.L. and Babiuk, L.A. Vaccine delivery: lipid-based delivery systems. J. Biotechnol. 83, 91-104 (2000).
Becker-Hapak, M., McAllister, S.S. and Dowdy, S.F. TAT-mediated protein transduction into mammalian cells. Methods 24, 247-256 (2001).
Breiteneder, H. and Mills, E. N. Molecular properties of food allergens. Journal of allergy and clinical immunology 115, 14-23 (2005).
Chen, T.Y., Hsu, C.T., Chang, K.H., Ting, C.Y., Whuang-Peng, J.K. and Hui, C.F. Development of DNA delivery system using Pseudomonas exotoxin A and a DNA binding region of human DNA topoisomerase I. Appl. Microbiol. Biotechnol. 53, 558-567 (2000).
D’arpa, P., Machlin, P.S., Ratrie H. III., Rothfield, N.F., Cleveland, D.W., and Earnshaw, W.C. cDNA cloning of human DNA topoisomerase I: catalytic activity of a 67.7-kDa carboxyl-terminal fragment. Proc. Natl. Acad. Sci. USA 85(8), 2543-2547 (1988).
Dean, N.M., McKay, R., Condon, T.P. & Bennett, C.F. Inhibition of protein kinase C-expression in human A549 cells by antisense oligonucleotides inhibits induction of intercellular adhesion molecule 1(lCAM-1)mRNA by phorbol esters. J. Biol. Chem. 269, 16416-16424 (1994).
Denicourt C. and Dowdy S.F. Protein transduction technology offers novel therapeutic approach for brain ischemia. Trends in Pharmacological Sciences 24, 216-218 (2003).
Elliott, G., and O’Hare, P. Intercellular trafficking and protein delivery by a herpes virus structural protein. Cell 88, 223-233 (1997).
Evelyn, T.P. A historical review of fish vaccinology. Dev. Biol. Stand. 90, 3-12 (1997).
Edwards, T.K., Saleem, A., Shaman, J.A., Dennis, T., Gerigk, C., Oliveros, E., Gartenberg, M.R., and Rubin, E.H. Role for nucleolin/Nsr1 in the cellular localization of topoisomerase I. J. Biol. Chem. 275, 36181-36188 (2000).
Ehsan, A., Mann, M.J., Dell’Acqua, G. & Dzau, V.J. Long-term stabilization of vein graft wall architecture and prolonged resistance to experimental atherosclerosis after E2F decoy oligonucleotide gene therapy. J. Thorac. Cardiovasc. Surg. 121, 714-722 (2001).
Fawell, S., Seery J., Daikh Y., Moore C., Chen L. L., Pepinsky B., and Barsoum J. Tat-mediated delivery of heterologous proteins into cells. Proc. Natl. Acad. Sci. USA. 91, 664-668 (1994).
Feltquate, D.M. DNA vaccines: vector design, delivery, and antigen presentation. J. Cell. Biochem. Suppl. 30/31, 304-311 FD (1998).
Ford, K.G., Souberbielle, B.E., Darling, D., and Farzaneh, F. Protein transduction: an alternative to genetic intervention? Gene Therapy 8, 1-4 (2001).
Falnes, P.O., Wesche, J., and Olsnes, S. Ability of the Tat basic domain and VP22 to mediate cell binding, but not membrane translocation of the diphtheria toxin A-fragment. Biochemistry 40, 4349-4358 (2001).
Gorman C. M., Moffat L. F., and Howard B. H. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol. Cell. Biol. 2, 1044-1051 (1982).
Gudding, R., Lillehaug, A., and Evensen, O. Recent developments in fish vaccinology. Vet. Immunol. Immunopathol. 72, 203-212 (1999).
Gariépy, J. and Kawnmura, K. Vectorial delivery of macromolecules into cells using peptide-based vehicles. Trends in Biotechnology 19, 21-28 (2001).
Hassett, D.E., and Whitton, J.L. DNA immunization. Trends in Microbiology 4, 307-312 (1996).
Heppell, J., and Davis, H.L. Application of DNA vaccine technology to aquaculture. Adv. Drug Deliv. Rev. 43, 29–43 (2000).
Horvath, H., Huang, J., Wong, O., Kohl, E., Okita, T., Kannangara, C.G., von Wettstein, D. The production of recombinant proteins in transgenic barley grains. Proc Natl Acad Sci USA 97, 1914-9 (2000).
Ho, Alan., Sachwarze, S.R., Mermelstein, S.J., Waksman, G., and Dowdy S.F.. Synthetic protein transduction domains: enhanced transduction potential in vitro and in vivo. Cancer Research 61, 474-477 (2001).
Issam, S. M., Mohamed, G., Farid, L., Sami, F., Thierry, M., Dominique, L. M., Nejib, M. Production, purification, and biochemical characterization of two beta-glucosidases from Sclerotinia sclerotiorum. Appl Biochem Biotechnol 111, 29-40 (2003).
Jorge V., Chengwen, S., Jianqing, D., Lucía F., Colin, S., Mohan, K.R. Transduction of a functional domain of the AT1 receptor in neurons by HIV-Tat PTD. Hypertension 41, 751-756 (2003).
Kanellos, T., Sylvester, I.D., Howard, C.R., and Russell P.H. DNA is as effective as protein at inducing antibody in fish. Vaccine 17, 965-972 (1999).
Koide, Y., Nagata, T., Yoshida, A., and Uchijima, M. DNA vaccines. Jpn. J. Pharmacol. 83, 167-174 (2000).
Lai, Z., Han, I., Zirzow, G., Brady, R.O., and Reiser, J. Intercellular delivery of a herpes simplex virus VP22 fusion protein from cells infected with lentiviral vectors. Proc. Natl. Acad. Sci. USA 97, 11297-11302 (2000).
Leifert, J.A., Harkins, S., Whitton, J.L. Full-length proteins attached to the HIV tat protein transduction domain are neither transduced between cells, nor exhibit enhanced immunogenicity. Gene Therapy 9, 1422-1428 (2002).
Mitani, K., and Caskey, C.T. Delivering therapeutic genes-matching approach and application. Trends in Biotechnology. 11, 5. 162-166 (1993).
Montgomery, D.L., Ulmer, J.B., Donnelly, J.J., and Liu, M.A. DNA vaccines. Pharmacol. Ther. 74, 195-205 (1997).
Macpherson, J.L., Ely, J.A., Sun, L.Q. & Symonds, G.P. Ribozymes in gene therapy of HIV-1. Front. Biosci. 4, D497-D505 (1999).
Mo, Y.Y., Wang, C., and Beck, W.T. A novel nuclear localization signal in human DNA topoisomerase I. J. Biol. Chem. 275, 41107-41113 (2000).
Morris, M.C., Depollier, J., Mery J., Heitz, F., and Divita, G.A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat. Biotechnol. 19, 1173-1176 (2001).
Morris, M.C., Vidal, P., Chaloin, L., Heitz, F., and Divita, G. A new peptide vector for efficient delivery of oligonucleotide into nontransformed mammalian cells. Nucleic Acids Res. 25, 2730-2736 (2001).
Mao, Y., Mehl, I.R., and Muller, M.T. Subnuclear distribution of topoisomerase I is linked to ongoing transcription and p53 status Proc. Natl. Acad. Sci. USA 99, 1235-1240 (2002).
Morris, M.C., Chaloin, L., Choob, M., Archdeacon, J., Heitz, F. and Divita, G. Combination of a new generation of PNAs with a peptide-based carrier enables efficient targeting of cell cycle progression. Gene Therapy 11(9),757-764(2004).
Normand, N., Leeuwen, H., and O’Hare, P. Particle formation by a conserved domain of the herpes simplex virus protein VP22 facilitating protein and nucleic acid delivery. J. Biol. Chem. 276, 15042-15050 (2001).
Niidome, T. and Huang, L. Gene therapy progress and prospects: nonviral vectors. Gene Therapy 9, 1647-1652 (2002).
Nagasaki, T., Myohoji, T., Tachibana, T., Futaki, S., and Tamagaki, S. Can nuclear localization signals enhance nuclear localization of plasmid DNA? Bioconjugate Chem. 14, 282-286 (2003).
Ogris, M., Steinlein, P,. Kursa, M., Mechtler, K., Kircheis, R., Wagner, E. The size of DNA/transferrin-PEI complexes is an important factor for gene expression in cultured cells. Gene Therapy 5, 1425-1433 (1998).
Oliveira, S.C., Rosinha, G.M., de-Brito, C.F., Fonseca, C.T., Afonso, R.R., Costa, M.C., Goes, A.M., Rech, E.L., and Azevedo, V. Immunological properties of gene vaccines delivered by different routes. Braz. J. Med. Biol. Res. 32, 207-214 (1999).
Opalinska, J.B. and Gewirtz, M. Nucleic-acid therapeutics: basic principles and recent applications. Nature Reviews│Drug Discovery 1, 503-514 (2002).
Phelan A., Elliott G., and O’Hare P. Intercellolar delivery of functional p53 by the herpes virus protein VP22. Nature Biotechnology 16, 440-443 (1998).
Pachuk, C.J., McCallus, D.E., Weiner, D.B., and Satishchandran, C. DNA vaccines--challenges in delivery. Curr. Opin. Mol. Ther. 2, 188-198 (2000).
Southern, E.M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98, 503-517 (1975).
Schneider, H., Huse, K., Birkenmieier, G., Otto, A., and Scholz, G.H. Gene transfer mediated by α2-macroglobulin. Nucleic Acids Res. 24, 3873-3874 (1996).
Schwarze, S.R., Ho, A., Vocero-Akbani A., and Dowdy S.F. In vivo protein transduction: delivery of a biologically active protein into mouse. Science 285, 1569-1572 (1999).
Schwartz, J.J., and Zhang, S. Peptide-mediated cellular delivery. Curr. Opin. Mol. Ther. 2, 162-7 (2000).
Shedlock, D.J., and Weiner, D.B. DNA vaccination : antigen presentation and the induction of immunity. J. Leukoc. Biol. 68, 793-806 (2000).
Sylvia van Drunen Littel-van den Hurk, Volker Gerdts, Bianca, I.L, Reno, P., Robert R., Richard U. and Lorne A.B. Recent advances in the use of DNA vaccines for the treatment of diseases of farmed animals. Adv. Drug. Delivery Review 43, 13-28 (2000).
Scheerlinck, J.Y. Genetic adjuvants for DNA vaccines. Vaccine 19, 2647–2656 (2001).
Tang, D., DeVit, M., and Johnston, S.A. Genetic immunization is a simple method for eliciting an immune response. Nature 365, 152-154 (1992).
Tuteja, R. DNA vaccines: a ray of hope. Critical Review Biochemistry and Molecular Biology. 34, 1-24 (1999).
Vives, E., Brodin, P., and Lebleu, B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem. 272, 16010-16017 (1997).
Wilson, J.M., Grossman, M., Wu, C.H., Chowdhury, N.R., and Wu, G.Y. Hepatocyte-directed gene transfer in vivo leads to transient improvement of hypercholesterolemia in low density lipoprotein receptor-deficient rabbits. J. Biol. Chem. 267, 963-967 (1992.a).
Wilson, J.M., Grossman, M., Carbrera, J., Wu, C.H., and Wu, G.Y. A novel mechanism for achieving transgene persistence in vivo after gene transfer into hepatocytes. J. Biol. Chem. 267, 11483-11489 (1992.b).
Whitton, J.L. et al. A "string-of-beads" vaccine, comprising linked minigenes, confers protection from lethal-dose virus challenge. J. Virol. 67, 348-352 (1993).
Whitton, J.L., Rodriguez, F., Zhang, J., and Hassett, D.E. DNA immunization: mechanistic studies. Vaccine 17, 1612-1619 (1999).
Zhu, N., Liggit, D., Liu, Y., and Debs, R. Systemic gene expression after intravenous DNA delivery into adult mice. Science 261, 209-211 (1993).
Zanta, M.A., Belguise-Valladier, P., and Behr, J.P. Gene delivery: A single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus. Proc. Natl. Acad. Sci. USA 96, 91-96 (1999).