簡易檢索 / 詳目顯示

研究生: 雲柏閔
Yun, Bo-Min
論文名稱: 探針強化式雙光子螢光顯微鏡之開發
R&D of Tip-enhanced Two-photon Excited Fluorescence Microscope
指導教授: 陳顯禎
Chen, Shean-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 52
中文關鍵詞: 無孔式近場掃描式光學顯微鏡雙光子螢光顯微術原子力顯微鏡探針強化式
外文關鍵詞: apertureless near-field scanning optical microscope, two-photon excited fluorescence microscopy, atomic force microscope, tip-enhanced
相關次數: 點閱:111下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統的遠場光學顯微技術受限於光學的繞射極限(diffraction limit),於軸向與側向空間解析度均無法達到小於二分之一波長的解析度,為了突破光學的繞射極限的限制,因此發展近場光學量測技術。雖然孔徑式近場掃描式光學顯微鏡(near-field scanning optical microscope,NSOM)可突破光學繞射極限,但解析度仍侷限在50 nm左右。為了達到更佳的空間解析度,本論文試圖發展一無孔式近場掃描式光學顯微鏡(apertureless near-field scanning optical microscope,aNSOM),並主要將其應用於螢光樣品的影像量測。一般無孔式近場螢光偵測技術主要有兩個問題必須克服,一個為金屬探針所造成的螢光淬滅現象,另一個為遠場的螢光所造成的背景雜訊。為了克服這些問題,利用矽探針來避免螢光淬滅現象的發生,並以雙光子螢光激發技術來減少因遠場螢光信號所造成的背景雜訊。論文以商用之原子力顯微鏡(atomic force microscope,AFM)為基礎,並搭配矽材探針、光學、機械系統設計及資料擷取卡中的FPGA模組為控制系統的核心,建立一探針強化式雙光子螢光顯微鏡(tip-enhanced two-photon excited fluorescence microscopy),期望能將空間解析度進一步提升。此外,針對近場螢光影像作相關之討論與量測,並分析探針與螢光分子的交互作用及螢光訊號的擷取,期望未來能將本系統應用在於分子生物領域上,得到分子尺度的螢光影像。

    Due to the restriction of the diffraction limit in conventional optical microscopes, the axial and lateral spatial resolutions are hard to be achieved to a nanometer scale. Although an aperture near-field scanning optical microscope (NSOM) has been developed for breaking the diffraction limit, the spatial resolution is still limited in the range of 50 nm. To improve the current lateral spatial resolution, an apertureless near-field scanning optical microscope (aNSOM) has been developed. Furthermore, the aNSOM is applied to measure near-field fluorescence signal. The two major drawbacks of the near-field fluorescence detection which are fluorescence quenching by the metallic tip and background signals from the far-field fluorescence signal. Silicon tips and two-photon excitation allow us for quenching free detection and background suppression, respectively. In this thesis, a tip-enhanced two-photon excited fluorescence microscopy based on a commercial atomic force microscope (AFM) combined with commercially silicon tip, optical, mechanical and the FPGA module in data acquisition card of the control system has been developed to attempt to achieve a better spatial resolution. To test the performance of the system, a near-field fluorescent image from fluorescence molecules is grabbed. The interaction between the fluorescence signal and the tip is studied to assist how to obtain the fluorescent signal more efficiency. Eventually, the system could play a key role in biomolecular field, and provide fluorescence images with a molecule-scale resolution.

    摘要 I Abstract II 誌謝 IV 目錄 V 圖目錄 VII 表目錄 IX 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-3 研究動機及目的 5 1-4 論文架構 6 第二章 無孔場光學顯微術 7 2-1 光學空間解析度 7 2-2 原子力顯微鏡之原理 10 2-3 無孔式近場掃描式光學顯微術之原理 12 第三章 近場螢光信號 16 3-1 螢光原理 16 3-2 雙光子螢光顯微術 21 3-3 近場螢光顯微術 23 第四章 系統架構 26 4-1 光學系統設計 26 4-2 機構設計與硬體設備 29 4-3 信號擷取及控制流程 35 第五章 實驗結果與討論 38 5-1 雙光子螢光顯微系統 38 5-2 近場螢光影像量測 41 第六章 結論與未來展望 46 參考文獻 48

    [1]V. L. Mironov, Fundamentals of Scanning Probe Microscopy (NT-MDT, 2004).
    [2]R. C. Dunn, “Near-field scanning optical microscopy,” Chem. Rev. 99, 2891-2927 (1999).
    [3]Y. Inouye and S. Kawata, “Near-field scanning optical microscope with a metallic probe tip,” Opt. Lett. 19, 159-161 (1994).
    [4]R. Bachelot, P. Gleyzes, and A. C. Boccara, “Near-field optical microscope based on perturbation of diffraction spot,” Opt. Lett. 20, 1924-1926 (1995).
    [5]朱仁佑、汪天仁、張祐嘉、葉吉田、王俊凱,“散射式掃描近場光學顯微鏡-次十奈米級光學檢測”,科儀新知,第163期,35-45頁,2008年。
    [6]H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Grating (Springer-Verlag, 1998).
    [7]T. J. Yang, G. A. Lessard, and S. R. Quake, “An apertureless near-field microscope for fluorescence imaging,” Appl. Phys. Lett. 76, 378-380 (2000).
    [8]B. D. Mangum, C. Mu, and J. M. Gerton, “Resolving single fluorophores within dense ensembles: contrast limits of tip-enhanced fluorescence microscopy,” Opt. Express 16, 6183-6193 (2008).
    [9]M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783-826 (1985).
    [10]C. Sonnichsen, A. C. Duch, G. Steininger, M. Koch, G. V. Plessen, and J. Feldmann, “Launching surface plasmons into nanoholes in metal films,” Appl. Phys. Lett. 76, 140-142 (2000).
    [11]L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, and U. Welp, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85, 467-469 (2004).
    [12]L. Aigouy, P. Lalanne and J. P. Hugonin, G. Julie, V. Mathet, and M. Mortier, “Near-field analysis of surface wave launched at nanoslit apertures,” Phys. Rev. Lett. 98, 153902 (2007).
    [13]D. Courjon, Near-Field Microscopy and Near-Field Optics (Imperial College, 2003).
    [14]E. H. Synge, “A suggested method for extending the resolution into the ultra-microscopic region,” Phil. Mag. 6, 356-362 (1928).
    [15]G. Binnig and H. Rohrer, “Scanning tunneling microscopy,” Helvetica Physica Acta 55, 726-735 (1982).
    [16]G. Binnig, C. F. Quate, and C. Gerber, “Atomic Force Microscope,” Phys. Rev. Lett. 56, 930 (1986).
    [17]A. Bek, Apertureless SNOM: A New Tool for Nano-Optics, Ph.D. thesis (Bilkent University, 2004).
    [18]L. Gomez, R. Bachelot, and P. Royer, “Apertureless scanning near-field optical microscopy a comparison between homodyne and heterodyne approaches,” J. Opt. Soc. Am. B. 23, 823-833 (2006).
    [19]B. Valeur, Molecular Fluorescence Principles and Applications, (Wiley-VCH, 2002).
    [20]G. G. Stokes, “On the change of refrangibility of light,” Philosoph. Trans. Roy. Soc. of London 142, 463-562 (1852).
    [21]G. Lessard, Apertureless Near-Field optical Microscopy for Fluorescence Imaging, Ph.D. Thesis (California Institute of Technology, 2003).
    [22]N. Hayazawa, Y. Inouye, and S. Kawata, “Evanescent field excitation and measurement of dye fluorescence in a metallic probe near-field scanning optical microscope,” J. Microsc. 194, 472-476 (1999).
    [23]T. J. Yang, G. A. Lessard, and S. R. Quake, “An apertureless near-field microscope for fluorescence imaging,” Appl. Phys. Lett. 76, 378-380 (2000).
    [24]E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014-4017 (1999).
    [25]N. Hayazawa, K. Furusawa, A. Taguchi, S. Kawata, and H. Abe, “Tip-enhanced two-photon excited fluorescence microscopy with a silicon tip,” Appl. Phys. Lett. 94, 193112 (2009).
    [26]J. M. Gerton, L. A. Wade, G. A. Lessard, Z. Ma, and S. R. Quake, “Tip-enhanced fluorescence microscopy at 10 nanometer resolution,” Phys Rev. Lett. 93, 180801 (2004).
    [27]黃貞翰,探針強化近場掃描式光學顯微鏡之研製,國立成功大學工程科學研究所,碩士論文,2006年。
    [28]林明彥、張嘉升、黎文龍,“原子力顯微鏡原理(上)”,科儀新知,第148期,46-57頁,2005年。
    [29]張憲彰、陳哲雄、林俊勳、林紋瑞、吳靖宙,原子力顯微鏡成像原理與中文簡易操作手冊,國立成功大學醫學工程所生醫感測實驗室,2008年。
    [30]B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering typescanning near-field optical microscopy,” Opt. Comm. 182, 321-328 (2000).
    [31]J. W. Lichtman and J. A. Conshello, “Fluorescence microscopy,” Nature Methods 2, 910-919 (2005).
    [32]陳長營,無孔徑近場掃描式顯微術於螢光影像之研究,國立成功大學,碩士論文,2008年。
    [33]D. Kim, Ultrafast Optical Pulse Manipulation in Three Dimensional-resolved Microscopic Imaging and Microfabrication, Ph.D. Thesis (MIT, 2009).
    [34]鄭力中,廣視域多光子激發螢光顯微術之開發與應用,國立成功大學,碩士論文,2009年。
    [35]S. Maruo and S. Kawata, “Two-photon-absorbed near-infrared photopolymerization for three-dimensional microfabrication,” J. Microelectromech. Syst. 7, 411-415 (1998).
    [36]H. F. Hamann, M. Kuno, A. Gallagher, and D. J. Nesbitt, “Molecular fluorescence in the vicinity of a nanoscopic probe,” Chem. Phys. 114, 8596-8509 (2001).
    [37]R. X. Bain, R. C. Dunn, and X. S. Xie, “Single molecule emission characteristics in near-field microscopy,” Phys. Rev. Lett. 75, 4772-4775 (1995).
    [38]A. Fragola and L. Aigouy, “Fluorescence apertureless scanning near field microscopy for high resolution biological imaging,” Proc. SPIE 5143, 139-143 (2003).
    [39]KMLabs, http://www.kmlabs.com.
    [40]NT-MDT, http://www.ntmdt.com.
    [41]Olympus, http://microscope.olympus-global.com.
    [42]Mad City Labs, http://www.madcitylabs.com.
    [43]http://www.nanoandmore.com/AFM-Probe-ATEC-NC.html.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE