簡易檢索 / 詳目顯示

研究生: 蘇皋群
Su, Kao-Chun
論文名稱: 渦流產生器對穿音速凸角流效應之研究
Vortex Generators on Tranonic Convex-Corner Flows
指導教授: 張克勤
Chang, Keh-Chin
共同指導教授: 鍾光民
Chung, Kung-Ming
學位類別: 博士
Doctor
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2022
畢業學年度: 111
語文別: 英文
論文頁數: 163
中文關鍵詞: 穿音速凸角流震波邊界層流場分離渦流產生器
外文關鍵詞: transonic flow, convex corner, oscillation, boundary layer separation, vortex generators
相關次數: 點閱:106下載:30
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用簡易凸角模型模擬襟翼上表面,透過風洞實驗方法探討渦流產生器(vortex generators, VGs)在不同幾何形狀及高度等條件下對穿音速凸角流場影響與氣動力特性。本研究中採用之自由流馬赫數(M)為0.8及0.9;凸角模型偏轉角度(η)為13°及15°;3種樣式之VGs,包含counter-rotating vane (CRV VGs)、triangular vane (TRV VGs)及co-rotating vane (CoV VGs);每種VGs之樣式皆包含4種高度,分別為h/δ (h*) = 0.2、0.5、1.0及1.5,其中h為VGs高度;δ為邊界層厚度。
    研究中首先探討VGs高度對穿音速凸角流場特性之影響。當h* = 0.2時,其平均表面壓力分布與無VGs之結果相似。當h* ≥ 0.5時,凸角上游處平均壓力增加,代表VGs於上游處產生幾何阻力(geometry drag);當h* ≥ 1.0時,整體平均表面壓力皆增加,代表除了凸角上游段產生幾何阻力外,亦減弱凸角下游段之擴張波強度。此現象隨著h*增加更加明顯。本研究採用的VGs皆可降低最大壓力擾動量,且其效應隨著VGs之高度增加而增加。此外VGs亦會降低邊界層分離長度及震波振盪頻率,其效應同樣隨高度增加而增加。
    由VGs高度比較結果可得知當h* ≥ 1時,VGs會於凸角度上游造成額外的幾何阻力並減弱下游段的擴張波強度。因此選用h* ≤ 0.5進行VGs (又稱為micro VGs, MVGs)幾何因素對穿音速凸角流場的特性探討。由平均表面壓力分布結果可發現,在相同高度的條件下,不同幾何形狀MVGs的壓力分布結果相似。而由壓力擾動分布結果發現,CRV MVGs最能有效降低最大壓力擾動量;而TR VGs則影響效果最小。然而,比較邊界層分離長度之結果可發現,TR MVGs對於邊界層分離長度的降低具有較佳的效益;CoV MVGs的效益最低。而比較震波振盪頻率之結果可得知,CRV MVGs最能降低其頻率;TR MVGs對其影響則為相對較小。
    由上述之結果可得知,本研究採用之VGs皆可有效降低最大壓力擾動量、流場分離長度及震波振盪頻率,惟當VGs高度之h* ≥ 1時會生成的額外幾何阻力並減弱擴張波的強度。因此若考量實務應用於穿音速流場之襟翼,VGs高度設計應優先考量h* ≤ 0.5之條件;而在幾何形狀的選用,可優先採用CRV VGs進行相關流場控制。

    A convex-corner model can be used to simulate upper surface of a deflected flap. This study determines the effect of vortex generators on transonic convex-corner flow. The freestream Mach number was 0.83 and 0.89, while the deflection angle was 13° and 15°. Three types of vortex generators were used in this study, including counter rotating vane, triangular ramp and co-rotating vane. The ratio (h* = h/) of height (h) of VGs and boundary layer thickness (δ) ranges from 0.2 to 1.5.
    This study firstly discussed the height effect of vortex generators on mean surface pressure distribution of transonic convex-corner flow. Vortex generators with h* = 0.2 on convex-corner model has a minor effect on mean surface pressure distribution, compared to a convex-corner model without the presence of vortex generators. For h* = 0.5, there is an increase in the mean surface pressure upstream of the convex corner which indicates an induced form drag. For h* ≥ 1.0, there is an overall increase in mean surface distribution. The greater height of VGs not only causes larger form drag upstream convex corner, but also reduces the strength of downstream expansion wave.
    The presence of VGs reduces the amplitude of the maximum pressure fluctuations. An increase in the height of vortex generators introduce higher velocity (or momentum) near the wall, which energizes the boundary layer. There is a decrease in the amplitude of maximum pressure fluctuations decrease as the height of vortex generators increases. The effectiveness of vortex generators on the maximum pressure fluctuations also depends on the type of vortex generators. The counter-rotating-vane vortex generators show a greater reduction in the amplitude of maximum pressure fluctuations reduction because of induced three-dimensional vortical structure.
    Oil flow visualization shows that the presence of vortex generators reduces separation length. An increase in the height of vortex generators results in a greater reduction in separation length, particularly for triangular-ramp vortex generator, and upstream movement for the onset of separation. Pressure-sensitive paint is used to visualize the global pressure pattern for the convex-corner with the presence of counter-rotating-vane vortex generators. The vortical structure sustains further downstream for higher freestream Mach number.
    The presence of vortex generators alleviates shock oscillation. An increase in the height of vortex generators results in greater reduction in shock zero-crossing frequency, so is the Strohaul number. Considering the configuration of vortex generators, the counter-rotating-vane vortex generators show the most reduction in shock zero-crossing frequency and Strohaul number.

    摘要 i ABSTRACT xiii 誌謝 xv CONTENTS xvii LIST of TABLES xix LIST of FIGURES xx NOMENCLATURE xxvi ABBREVIATIONS xxviiii Chapter 1 INTRODUCTION 1 1.1 Background 2 1.2 Objectives of this study 12 Chapter 2 LITERATURE REVIEW 14 2.1 Shock induced boundary layer separation 14 2.2 Unsteadiness of low-frequency motions in SILBS 24 2.3 Transonic convex-corner flows 31 2.4 Vortex generators (VGs) 36 2.5 Summary of literature review 43 Chapter 3 EXPERIMENTAL METHOD 44 3.1 Transonic wind tunnel 44 3.2 Test model 49 3.3 Data acquisition system and instrumentation 53 3.4 Data analysis 55 3.5 Pressure-sensitive paint 59 Chapter 4 RESULTS AND DISCUSSION 63 4.1 Mean surface pressure distributions 63 4.2 Surface pressure fluctuations 85 4.3 Surface oil flow visualization 104 4.4 Shock oscillation 113 Chapter 5 CONCLUSIONS AND RECOMMENDATIONS 122 5.1 Conclusions 122 5.2 Recommendations 124 References 125 Appendix Surface oil flow visualization 142

    Adams, N. A. (2000). Direct simulation of the turbulent boundary layer along a compression ramp at M =3 and Reθ =1685. Journal of Fluid Mechanics, 42, 47-83.

    Ahuja, K. K. and Burrin, B. H. (1984). Control of flow separation by sound. AIAA Paper 84-2298.

    Ahmed, T., Amin, M. T., and Ahmed, S. (2013). Computational study of flow around a NACA 0012 wings flapped at different flap angles with varying Mach numbers. Global Journal of Research in Engineering, 13(4).

    Andreopoulos, J. and Muck, K. C. (1987). Some new aspects of the shock-wave/boundary-layer interaction in compression-ramp flows. Journal of Fluid Mechanics, 180, 405-428.

    Anderson, B. H., Tinapple, J., and Surber, L. (2006). Optimal control of shock wave turbulent boundary layer interactions using micro-array actuation. 3rd AIAA Flow Control Conference.

    Ashill, P.R., Fulker, J.L., and Hackett, K.C. (2001). Research at DERA on sub boundary layer vortex generators (SBVGS). AIAA Paper 2001-0887.

    Ashill, P. R. Fulker, J. L., and Hackett, K. C. (2005). A reviews of recent developments in flow control. Aeronautical Journal, 2977, 205-232.

    Babinsky, H. and Ogawa, H. (2008). SBLI control for wings and inlets. Shock Waves, 18, 89-96.

    Babinsky, H., Li, Y., and Pitt Ford, C. W. (2009). Micro-ramp control of supersonic oblique shock-wave/boundary-layer interactions. AIAA Journal, 47(3), 668-675.

    Babinsky, H. and Harvery, J. K. (2011). Shock wave-boundary layer interactions. Cambridge university Press, Cambridge.

    Baqheri, H., Mirjalily, S.A.A. Oloomi, S.A.A., and Salimpour, M.R. (2020). Effects of micro-vortex generators on shock wave structure in a low aspect ratio duct. numerical investigation, ACTA Astronautica, 178, 616-624.

    Barter, J. W. and Dolling, D. S. (1995). Reduction of fluctuating pressure loads in shock/boundary-layer interactions using vortex generators. AIAA Journal, 33(10), 1842-1849.

    Baydar, E., Lu, F.K., and Slater, J.W. (2018). Vortex generators in a two-dimensional external-compression supersonic inlet. Journal of Propulsion and Power, 34(2), 521-538.

    Beresh, S.J., Clements, N.T., and Dolling, D.S. (2002). Relationship between upstream turbulent boundary-layer velocity fluctuations and separation shock unsteadiness. AIAA Journal, 40 (12), 2412–2422.

    Bies, D.A. (1966). Flight and wind tunnel measurements of boundary layer pressure fluctuations and induced structural response. NASA-CR-626.

    Blinde, P. L. Humble, R. A., van Oudheusden, B. W., and Scarano, F. (2009). Effects of micro-ramps on a shock wave/turbulent boundary layer interaction. Shock Waves, 19(6), 507-520.

    Bodonyi, R. J. and Kluwick, A., (1977). Freely interacting transonic boundary layers. Physics of fluids, 22, 1432-1437.

    Bodonyi, R. J. (1979). Transonic laminar boundary-layer flow near convex corner. The Quarterly Journal of Mechanics and Applied Mathematics, 32(1), 63-71.

    Bodonyi, R. J. and Kluwick, A. (1982). Supercritical transonic trailing-edge flow. The Quarterly Journal of Mechanics and Applied Mathematics, 35(2), 265-277.

    Bodonyi, R. J. and Kluwick, A. (1998). Transonic trailing-edge flow. The Quarterly Journal of Mechanics and Applied Mathematics, 51(2), 297-310.

    Bolonkin, A. and Gilyard, G. B. (1999). Estimated benefits of variable-geometry wing camber control for transport aircraft. NASA TM-1999-206586.

    Bouhadji, A. and Braza, M. (2003). Organised modes and shock-vortex interaction in unsteady viscous transonic flows around an aerofoil Part I: Mach number effect. Computers & Fluids, 32, 1233-1260.

    Bruynes, H. (1951). Fluid mixing device. U. S. patent 2558816.

    Brüderlin, M., Zimmer, M., Hosters, N. and Behr, M. (2017). Numerical simulation of vortex generators on a winglet control surface. Aerospace Science and Technology, 71, 651-660.

    Bur, R., Coponet, D. and Carpels, Y. (2009). Separation control by vortex generator devices in a transonic channel flow. Shock Waves, 19, 521-530.

    Caruana, D., Mignosi, A., Correge, M., Le pourhiet, A., and Rodde, A. M. (2005).
    Buffet and buffeting control in transonic flow. Aerospace Science and Technology, 9(7), 605-616.

    Cathalifauda, P., Godardb, G., Braudc, C., and Stanislas, M. (2009). The flow structure behind vortex generators embedded in a decelerating turbulent boundary layer. Journal of Turbulence, 10(42), 1 - 37.

    Chapman, D. R., Kuehn, D. M., and Larson, H. K. (1957). Investigation of separated flows in supersonic and subsonic streams with emphasis on the effect of transition. NACA Report 1356.

    Chung, K. M. (2000). Transition of subsonic and transonic expansion - corner flows. Journal of Aircraft, 37(6), 1079-1082.

    Chung, K. M. (2002). Investigation on transonic convex-corner flows. Journal of Aircraft. 39(6), 1014-1018.

    Chung, K. M. (2007). Upstream blowing jet on transonic convex-corner flow. Journal of Aircraft, 44(6), 1948-1953.

    Chung, K. M. (2010). Effect of normal on compressible convex-corner flows. Journal of Aircraft 47(4), 1189-1196.

    Chung, K. M., Chang, P. H., and Chang, K. C. (2012). Flow similarity in compressible convex-corner flows. AIAA Journal, 50(4), 985-988.

    Chung, K. M., Chang, P. H., and Chang, K. C. (2014). Investigation on transonic round convex-corner flows. Aerospace and Technology, 37, 20-25.

    Chung, K. M., Chang, P. H., Chang, K. C., and Lu, F. K. (2014). Investigation of transonic bi-convex corner flows. Aerospace and Technology, 39, 22 - 39.

    Chung, K. M., Chang, P. H., and Chang, K. C. (2014). Effect of Reynolds number on compressible convex-corner flows. Advances in Aircraft and Spacecraft Science, 1(4), 443-454.

    Chung, K. M., Lee, K. H, and Chang, P. H. (2017). Low-frequency shock motion in transonic convex-corner flows. AIAA Journal, 55(6), 2109-2112.

    Chung, K. M. and Su, K. C. (2019). An experimental study on transonic swept convex-corner flows. Aerospace Science and Technology, 84, 565 - 569.

    Chung, K.M. and Huang, Y. X. (2021). Global Visualization of compressible swept convex-corner flow using pressure-sensitive paint. Aerospace, 8(4), 106.

    Clarese, W. Crisler, W. P., and Gustafson, G. L. (1985). After-body drag reduction by vortex generators, AIAA Paper 85-0354.

    Cohen, G. S. and Motallebi, F. (2006). Sub boundary-layer vortex generators for the control of shock induced separation. Aeronaut Journal, 110(1106), 215-226.

    Cohen, C. S. and Motallebi, F. (2008). Influence of the height of the vortex generators in the control of shock-induced separation of the boundary layers. The Aeronautical Journal, 112(1133), 415-420.

    Corcos, G. M. (1963). Resolution of pressure in turbulence. Journal of Acoustical Society of America, 35(2), 192-199.

    Criggs, C. F. (1958). An investigation of two methods of suppressing shock oscillations ahead of conical centre-body intakes. Aeronautical Research Council, CP605.

    Cumpsty, N. A. and Heard, M. R. (1967) The calculation of three-dimensional turbulent boundary layers Part 1: Flow over the rear of an infinite swept wing. Aeronautical Quarterly, 18(1), 55-84.

    Delery, J. (1985). Shock wave turbulent boundary layer interaction and its control. Progress in Aerospace Sciences, 22(4), 209-280.

    Djojodihardjo, H. and Thangarajah, N. (2014). Research, development and recent patents on circulation control – A critical review. Recent Patents on Mechanical Engineering, 7(1), 1-37.

    Dolling, D. S. and Murphy, M. T. (1983). Unsteadiness of the separation shock wave structure in a supersonic compression ramp flowfield. AIAA Journal, 21(21), 1628-1634.

    Dolling, D. S. and Or, C. T. (1985). Unsteadiness of the shock-wave structure in attached and separated ramp flows. Experiments in Fluids, 3(1), 24-32.

    Dolling, D. S. and Narlo, J. C. (1987). Driving mechanism of unsteady separation shock motion in hypersonic interactive flow. AGARD-CP-428: Aerodynamics of Hypersonic Lifting Vehicles.

    Dolling, D. S. and Brusniak L. (1989). Separation shock motion in fin, cylinder, and compression ramp induced turbulent interactions. AIAA Journal, 27(6), 734-742.

    Donaldson, C. (1950). Investigation of a simple device for preventing separation due to shock and boundary-layer interaction. NACA RM-L50B02a.

    Dussauge, J. P. and Smits, A. J. (1997). Characteristic scales for energetic eddies in turbulent supersonic boundary layers. Experimental Thermal and Fluid Science, 14, 85-91.

    Dussauge, J. P., Dupont, P., and Debieve, J. F. (2006). Unsteadiness in shock wave boundary layer interactions with separation. Aerospace Science and Technology, 10, 85-91.

    Edwards, J. B. W. (1966). Free-flight tests of vortex generator configurations at transonic speeds. Royal Aircraft Establishment, CP729.

    Erengil, M. E. and Dolling, D. S. (1993). Physical causes of separation shock unsteadiness in shock-wave/turbulent boundary layer interactions. AIAA paper 93-3134.

    Ferrero, A. (2020). Control of a supersonic inlet in off-design conditions with plasma actuators and bleed. Aerospace, 7(3), 32.

    Ganapathisubraman, B., Clements, N. T., and Dolling, D. S. (2007). Effects of upstream boundary layer on the unsteadiness of shock-induced separation. Journal of Fluid Mechanics, 585, 369-394.

    Ganapathisubraman, B., Clements, N. T., and Dolling, D. S. (2009). Low-frequency dynamics of shock-induced separation in a compression ramp interaction. Journal of Fluid Mechanics, 636, 397-425.

    Ganzer, U. (1968). Investigation on jet spoilers in the supersonic range with a view to an application for fuel injection. VDI FB Zeit., 12(20).

    Gao, W.Z., Chen, J., Liu, C.H., Li, Z.F., Yang, J.M., and Zeng, Y.S. (2020). Effects of vortex generators on unsteady unstarted flows of an axisymmetric inlet with nose bluntness. Aerospace Science and Technology, 104, 106021.

    Gaqeik, M., Nies, J., Klioutchnikov, I. and Oliver, H. (2018). Pressure wave damping in transonic airfoil flow by means of micro vortex generators. Aerospace Science and Technology, 81, 65-77.

    Garnier, E., Sagaut, P., and Devile, M. (2002). Large eddy simulation of shock/boundary-layer interaction. AIAA Journal, 40(10).

    Genc, M. S., Koca, K., Demir, H., and Cikel, H. H. (2019). Autonomous Vehicles.

    Gramann, R. A. and Dolling, D. S. (1989). A preliminary study of turbulent structures associated with unsteady separation shock motion in a Mach 5 compression ramp interaction. AIAA-92-0744.

    Gramann, R. A. and Dolling D. S. (1990a). Dynamics of separation and reattachment in a Mach 5 unswept compression ramp flow. AIAA 90-0380.

    Gramann, R. A. and Dolling D. S. (1990b). Detection of turbulent boundary-layer separation using fluctuating wall pressure signals. AIAA Journal, 28(6), 1052-1056.

    Green, J. E. (1968). Reflection of an oblique shock wave by a turbulent boundary layer. Journal of Fluid Mechanics, 40, Part I, 81-95.

    Griggs, C. F. (1958). An investigation of two methods of suppressing shock oscillations ahead of conical centre-body. Aeronautical Research Council, CP 605.

    Grose, R. M. and Taylor, H. D. (1954). Theoretical and experimental investigation of various types of vortex generators. United Aircraft Corporation Research Department, Report R-15362-5.

    Hama, F. R. (1968). Experimental studies on the lip shock. AIAA Journal, 6(2) 2112-19.

    Hardy, R. (1983). AFTI/F-111 mission adaptive wing technology demonstration program. AIAA paper 83-1057.

    Herges, T. G., Kroeker, E., Elliot, G., and Dutton, C. (2010). Microramp flow control of normal shock/boundary-layer interactions. AIAA Journal, 48(11), 2529-2542.

    Holder, D., Pearcey, H., and Gadd, G. (1954). The interaction between shock waves and boundary layers, with a not on the effects of the interaction on the performance of supersonic intakes. Aeronautical Research Council, CP 180.

    Holden, H.A and Babinsky, H. (2004) Vortex generators near shock/boundary layer interactions. AIAA Paper 2004-2142.

    Holden, H. A. and Babinsky, H. (2004). Vortex generators near shock/boundary layer interactions. 42nd AIAA Aerospace Sciences Meeting and Exhibit.

    Hu, J. Wang, R., and Huang, D. (2018). Flow control mechanisms of a combined approach using blade slot and vortex generator in compressor cascade. Aerospace Science and Technology, 78, 320-331.

    Hu, W., Hickel, S., and Van Oudheusden, B.W. (2021). Low-frequency unsteadiness mechanisms in shock wave/turbulent boundary layer interactions over a backward-facing step. Journal of Fluid Mechanics, 915, A107.

    Hu, W. Hickel, S., and Van Oudheusden, B.W. (2021). Low-frequency unsteadiness mechanisms in shock wave/turbulent boundary layer interactions over a backward-facing step. Journal of Fluid Mechanics, 915, A107.

    Huang, W., Wu, H., Yang, Y.G., Yan, L., and Li, S.B. (2020). Recent advances in the shock wave/boundary layer interaction and its control in internal and external flows. ACTA Astronautica, 174, 103-122.

    Humble, R. A., Scarano, F., and van Oudheusden, B. W. (2006). Experimental study of an incident shock wave/boundary interaction using PIV. 36th AIAA Fluid Dynamics Conference and Exhibit, San Francisco, USA.

    Hunt, D. and Nixon, D. (1995). Very large eddy simulation of an unsteady shock-wave/turbulent boundary-layer interactions. AIAA Paper, 95-2212.

    Jenkin, L., Gorton, S.A., and Anders, S. (2002). Flow control device evaluation for an internal flow with an adverse pressure gradient. AIAA Paper 2002-0266.

    Johnston, J. P. (1960). On the three-dimensional turbulent boundary layer generated by secondary flow. Journal of Basic Engineering, Series D, Trans, ASME 82, 233.

    Kinefuchi, K., Starikovskiy, A. Y., and Miles, R. B. (2018). Numerical investigation of nanosecond pulsed plasma actuators for control of shock-wave/boundary-layer separation. Physics of Fluids, 30(10), 106105.

    Kistler, A. L. Fluctuating wall pressure under a separated supersonic flow. Journal of the Acoustical Society of America, 36(3), 543-550.

    Konstantinidis, K. (2019). Active control of bluff-body flows using plasma actuators. Actuators, 8(3), 66.

    Lachmann, C. V. (1961). Boundary layer and flow control: Its principles and applications, Pergamon.

    Laganelli, A. L., Martellucci, A., and Shaw, L. L. (1983). Wall pressure fluctuations in attached boundary-layer flow. AIAA Journal, 21(4), 495-502.

    Lee, B. H. K. (2001). Self-sustained shock oscillations on airfoils at transonic speeds. Progress in Aerospace Science, 37, 147-196.

    Lee, S., Humble, R. A., van Oudheusden, B. W., and Scarano, F. (2010). Microramps upstream of an oblique-shock/boundary-layer interaction. AIAA Journal, 48(11), 104-118.

    Lee, S., Loth, E., and Babinsky, H. (2011). Normal shock boundary layer control with various vortex generator geometries. Computer and Fluids, 49(1), 233-24.

    Lee, S. and Loth, E. (2011). Effect of Mach number on flow past microramps. AIAA Journal, 49(1), 97-110.

    Lee, S. and Loth, E. (2012). Impact of ramped vanes on normal shock boundary-layer interaction. AIAA Journal, 50(10), 2069-2079.

    Li, S. X., Chen, Y. K. and Ni, Z. K. (2001). Flowfield features on hypersonic flow over rectangular obstacles. Journal of Visualization, 4(1), 73-79.

    Li, X. K., Liu, W., Zhang, T. J., Wang, P. M., and Wang, X. D. (2019). Analysis of the effect of vortex generator spacing on boundary layer flow separation control. Applied Science, 9, 5495.

    Lighthill, M. J. (1953). On boundary layers and upstream influences II. Supersonic flows without separation. Royal Society, 217(1131).

    Lighthill, M. J. (1963). Laminar boundary layers, Oxford University press.

    Lin, J. C., Howard, F. G., and Selby, G. V. (1989). Turbulent flow separation control through passive techniques. AIAA paper 89-0976.

    Lin, J. C., Selby, G. V., and Howard, F. G. (1990). Exploratory study of vortex generating devices for turbulent flow separation control. AIAA paper 910042.

    Lin, J. C., Howard, F. C., Bushnell, D. M., and Selby, G. V. (1990). Investigation of several passive and active methods for turbulent flow separation control. AIAA Paper 90-1598.

    Lin, J. C., Robinson, S. K., Mcghee, R. J., and Valarezo, We. O. (1994). Separation control on high-lift airfoils via micro-vortex generators. Journal of Aircraft, 31(6), 1317-1323.

    Lin, J. C. (1999). Control of turbulent boundary-layer separation using micro-vortex generators. AIAA paper 99-3404.

    Lin, J. C. (2002). Review of research on low-profile vortex generators to control boundary-layer separation. Progress in Aerospace Sciences, 38(4-5), 389-420.

    Lina, L. J. and Reed III, W. H. (1950). A preliminary flight investigation of the effects of vortex generators on separation due to shock. NACA, RML50J02.

    Liu, X. and Squire, L. C. (1988). An investigation of shock/boundary layer interaction on curved surfaces at transonic speeds. Journal of Fluid Mechanics, 187, 467-486.

    Loginov, M. S., Adams, N. A., and Zheltovodov, A. A. (2006). Large eddy simulation of shock-wave/turbulent-boundary -layer interaction. Journal of Fluid Mechanics, 55, 135-169.

    Lu, F. K. (2015). Visualization of supersonic flow around a sharp-edged, sub-boundary-layer protuberance. Journal of Visualization, 18(4), 619-629.

    Lu, W., Tian, Y., and Liu, P. (2017). Aerodynamic optimization and mechanism design of flexible variable camber trailing-edge flap. Chinese Journal of Aerodynamics, 30(3), 988-1003.

    Manor, D., Dima, C., Schoch, P., and Polo, J. (1993). Using pop-up vortex generators on the wing surface to greatly increase the lift and stall angle of attach. AIAA Paper, No. 93-1016.

    McCormic, D. C. (1993). Shock/boundary-layer interaction control with vortex generators and passive cavity. AIAA Journal, 31(1), 91-96.

    McCullough, G. B., Nitzberg, G. E., and Kelly, J. A. (1951). Preliminary investigation of the delay of turbulent flow separation by means of wedge-shaped bodies. NACA, RM-A50L12.

    Mitchell, G. A. and Davis, R. W. (1968). Performance of center body vortex generators in an axisymmetric mixed-compression inlet at Mach numbers from 2.0 to 3.0. NASA, TN D-4675.

    Mitchell, G. A. (1971). Experimental investigation of the performance of vortex generators mounted in the supersonic portion of a mixed-compression inlet. NASA, TM Z-2405.

    Moore, M. and Frei, D. (1983). X-29A forward-swept wing aerodynamic overview. AIAA 83-1834.

    Panaras A. G. and Lu, F. K. (2015). Micro-vortex generators for shock wave/boundary layer interactions. Progress in Aerospace Sciences, 74, 16-47.

    Pearcey, H. H. (1961). Shock induced separation and its prevention by design and boundary-layer control. Boundary layer and flow control. Lachmann, Pergamon Press, 2, 1166-1344.

    Piponniau, S., Dussage, J.P., Debieve, J.F., and Dupont, P. (2009). A simple model for low frequency unsteadiness in shock-induced separation. Journal of Fluid Mechanics, 629, 87-108.

    Pirozzoli, S. and Grasso, F. (2006). Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M = 2.25. Physics of Fluids, 18 (6), 065113.

    Pirozzoli, S., Beer, A., Bernarini, M., and Grasso, F. (2009). Computational analysis of impinging shock-wave boundary layer interaction under conditions of incipient separation. Shock Waves, 19(6), 48-497.

    Ruban, A. I., Wu, X. and Pereira, R. M. S. (2006). Viscous-inviscid interaction in transonic Prandtl-Meyer flow. Journal of Fluid Mechanics, 568, 387-424.

    Rybalko, M., Babinsky, H., and Loth, E. (2012). Vortex generators for a normal shock/boundary-layer interaction with a downstream diffuser. Journal of Propulsion and Power, 28(1), 71-82.

    Schubauer, G. B. and Spangenberg, W. G. (1958). Forced mixing in boundary layers. Journal of Fluid Mechanics, 8(1), 10-32.

    Seddon, J. (1960). The flow produced by interaction of a turbulent boundary layer with a normal shock wave of strength sufficient to cause separation. Aeronautical Research Council, R&M No. 3502.

    Sirieix, M., Mirande, J., and Delery, J. (1966). Basic experiments on the reattachment of a supersonic stream. AGARD CP No. 4, Pt. 1, pp. 353-91. RAE Library Translation No. 1196.

    Souckova, N., Kuklova, J., Popelka, L. and Matejka, M. (2012). Visualization of flow separation and control by vortex generators on a single flap in landing configuration. EPJ web of Conference, 25, 02026.

    Stewartson, K. and Williams, P. G. (1969). Self-induced separation. Royal Society, 312(1509).

    Stewartson, K. and Williams, P. G. (1969). Self-induced separation II. Mathematika, 20(1), pp.98-108.

    Sun, Z. Z., Miao, X., and Jaqadeesh, C. (2020). Experimental investigation of the transonic shock-wave/boundary-layer interaction over a shock-generation bump. Physics Fluids, 32(10), 106102.

    Szodruch, J. (1986). Advanced wing aerodynamics for transport aircraft. 4. BMFT Statusseminar, German Ministry of Research and Technology.

    Szodruch, J. and Hilbig, R. (1988). Variable wing camber for transport aircraft. Progress in Aerospace Science, 25 (3), 297-328.

    Taylor, H. D. (1947). The elimination of diffuser separation by vortex generators. UAC Report, R-4012-3.

    Teramoto, S. (2005). Large eddy simulation of transitional boundary layer with imping shock wave. AIAA Journal, 43(11).

    Thiede, P., Krogmann, P., and Stanewsky, E. (1984). Active and passive shock/boundary layer interaction control on supercritical airfoils. AGARD CP-365.

    Threadgill, J. A. S. and Bruce, P. J. K. (2020). Unsteady flow features across different shock/boundary-layer interaction configurations. AIAA Journal, 58(7).

    Tichener, N. and Babinsky, H. (2013). Shock wave/boundary-layer interaction control using a combination of vortex generators and bleed. AIAA Journal. 51(5), 1221-1223.

    Titchener, N. and Babinsky, H. (2015). A review of the use of vortex generators for mitigating shock-induced separation. Shock Waves, 25, 473-494.

    Touber, E. and Sandham N. D. (2009). Large-eddy simulation of low-frequency unsteadiness in a turbulent shock-induced separation bubble. Theoretical and Computational Fluid Dynamics, 23, 79-107.

    Touber, E. and Sandham, N. D. (2011). Low-order stochastic modelling of low-frequency motions in reflected shock-wave/boundary-layer interactions. Journal of Fluid Mechanics, 671, 417-465.

    Tran, T. T. (1987). An experimental Investigation of unsteadiness in swept shock wave/turbulent boundary layer Interactions (Order No. 8716903). Available from ProQuest Dissertations & Theses A&I. (303615680).

    Unalmis, O. H. and Dolling, D. S. (1994). Decay of wall pressure field and structure of a Mach 5 adiabatic turbulent boundary layer. AIAA Paper, 94-2363.

    van DijK, A. and de Lange, H. C. (2007). Compressible laminar flow around a wall-mounted cubic obstacle. Computers and Fluids, 36(5) 949-960.

    Verma, S. B., Manisankar, C., and Raju, C. (2012). Control of shock unsteadiness in shock boundary layer interaction on a compression corner using mechanical vortex generators. Shock Waves, 22(6), 327-339.

    Verma, S. B. and Manisanakr, C. (2017). Assessment of various low-profile mechanical vortex generators in controlling a shock-induced separation. AIAA journal, 55(7), 2228-2240.

    Verma, S.B. and Manisankar, C. (2018). Control of a Mach reflection-induced interaction using an array of vane-type vortex generators. Shock Waves, 28, 815-828.
    Wang, C., Yang , X., Xue, L., Kontis, K. and Jiao, Y. (2019). Correlation analysis of separation shock oscillation and wall pressure fluctuation in unstarted hypersonic inlet flow. Aerospace, 6(1), 8.

    Weinbaum, S. and Garvine, R. W. (1968). An exact treatment of the boundary layer equations describing the two-dimensional viscous analog of the one-dimensional inviscid throat. AIAA Paper No. 68-102.

    Wendt, B. J. and Hingst, W. R. (1994). Measurement and modelling of flow structure in the wake of a low profile wishbone vortex generator. NASA TM-106468.

    Wu, M. and Martin, M. P. (2007). Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp. AIAA journal, 45(4)

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE