簡易檢索 / 詳目顯示

研究生: 蔡念庭
Tsai, Nien-Ting
論文名稱: 在矽金字塔基板上成長白光氮化銦鎵奈米柱
White-light Emitted InGaN Nanorods Grown on Pyramided Si Substrate
指導教授: 吳忠霖
Wu, Chung-Lin
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 59
中文關鍵詞: 電漿輔助式分子束磊晶系統矽金字塔基板氮化銦鎵奈米柱
外文關鍵詞: Plasma-assisted molecular beam epitaxy system, Pyramid Si substrate, InGaN, Nanorod
相關次數: 點閱:93下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文是利用電漿輔助式分子束磊晶系統(PA-MBE),在矽金字塔基板上進行成長氮化銦鎵(InGaN)奈米柱。由於金字塔結構的原因,使得在單一的成長條件下,調控出金字塔每一面上擁有不同銦和鎵的含量的奈米柱,因此造成金字塔四面發出不同波段的光,其製造出氮化銦鎵奈米柱發白光的效果。
    由掃描電子顯微鏡(SEM)我們可以知道每一面奈米柱形貌不同,當銦通量(In flux)和鎵通量(Ga flux)直接撞擊到金字塔上,使得奈米柱直徑較大,當銦通量和鎵通量對於金字塔是遮蔽面,使得奈米柱直徑較小,其長度並沒有太大差異性,約為1μm。此外,氮通量(N flux)主要是控制奈米柱成長方向,所以在金字塔上成長氮化銦鎵奈米柱,明顯的發現奈米柱往頂部傾斜的現象。而光致螢光光譜(PL)量測結果,氮化銦鎵奈米柱成功發出白光,此光譜呈現一個連續現象,我們也透過陰極激發發光(CL)及能量色散X-射線光譜(EDS)量測來證明金字塔上四面氮化銦鎵奈米柱組成成分不同及發光不同。最後我們將成長的氮化銦鎵奈米柱施加一個機械力並進行光致螢光光譜量測,其結果發現光譜有藍移現象,其藍移約7nm。

    In this study, InGaN nanorods were grown on pyramided Si substrate by plasma-assisted molecular beam epitaxy system (PA-MBE). We have grown white-light emitting InGaN nanorods on pyramid Si substrate with single flux ratio, thus causing different In and Ga contents and different emission colors on each face of pyramid Si substrate. From SEM images, the different morphologies of the nanorods are revealed on each face of pyramid Si substrate. When In flux and Ga flux impinges vertically on pyramid, the InGaN nanorods show large rod diameter. However, when In flux and Ga flux impinges with grazing incidence on pyramid result in nanorods with small diameter. The length of the nanorods is about 1 μm. In addition, the direction of N flux enables to control the growth direction of InGaN nanorods on pyramid substrate, which we obviously found nanorods to tilt toward the top of pyramid. PL spectrum measurement results show that the white light emission has been achieved successfully by InGaN nanorods, and the spectrum exhibits a continuous emission range. We have confirmed that each face of pyramid substrate has different composition and different light emission by using spatial resolved catholuminescence (CL) and electron energy loss spectroscopy (EDS) measurements. Finally, we apply the mechanical force on InGaN nanorods, and PL spectrum shows the emission peaks with blue shift of 7 nm due to the photo-piezoelectric effect of III-nitride semiconductors.

    第一章 緒論 1 1.1 Ⅲ族氮化物半導體 1 1.2 發光二極體簡介 2 1.3 奈米柱之壓電效應 3 第二章 實驗儀器及分析 4 2.1 電漿輔助式分子束磊晶系統 (PA-MBE) 4 2.2 掃描電子顯微鏡 (SEM) 7 2.3 光致螢光光譜儀 (PL) 8 2.4 陰極螢光光譜光譜 (CL) 10 2.5 能量色散X-射線光譜儀 (EDS) 11 2.6 旋轉塗佈機 (Spin coater) 12 2.7 色度系統 (CIE) 13 第三章 實驗原理及成長機制 15 3.1 矽金字塔上成長氮化鎵奈米柱機制 15 3.1.1 氮化鎵奈米柱晶體結構成長 15 3.1.2 氮化鎵奈米柱在矽金字塔上成長機制 16 3.2 矽金字塔上成長氮化銦鎵奈米柱機制 17 3.2.1 氮化銦鎵奈米柱成長機制及形貌 17 3.2.2 銦和鎵蒸鍍源與氮原子射頻電漿對於金字塔造成的影響 20 第四章 實驗製程及設計 27 4.1 矽金字塔製備方法及清洗 27 4.2 氮化鎵奈米柱的成長 29 4.3 氮化銦鎵奈米柱的成長 30 4.3.1 銦蒸鍍源與鎵蒸鍍源之間夾72度的成長 30 第五章 實驗結果與討論 32 5.1 白光氮化銦鎵奈米柱研究分析 32 5.1.1 白光氮化銦鎵奈米柱形貌探討 32 5.1.2 白光氮化銦鎵奈米柱之光致螢光光譜量測及色度分析 41 5.1.3 金字塔結構上各面奈米柱之陰極激發光譜分析 43 5.1.4 金字塔結構上各面奈米柱之能量色散X-射線光譜分析 49 5.2 施力於白光氮化銦鎵奈米柱之光致螢光光譜及色度分析 51 第六章 總結 55 6.1 結論 55 6.2 未來展望 56 參考文獻 57

    [1] Nils Asmus Kristian, Investigation of indium-rich InGaN alloys and kinetic growth regime of GaN, Thèse École polytechnique fédérale de Lausanne EPFL, n° 5776 (2013)
    [2] Kai-Kuen Chang, Research of Ⅲ-Nitrides on Si(110) substrates:Epitaxial Growth and Fundamental Properties, 國立清華大學物理系碩士論文(2009)
    [3] Hon-Way Lin, Yu-Jung Lu, Hung-Ying Chen, Hong-Mao Lee, and Shangjr Gwo, InGaN/GaN nanorod array white light-emitting diode, APPLIED PHYSICS LETTERS 97, 073101 (2010)
    [4] Nick Holonyak Jr. and S. F. Bevacqua, COHERENT (VISIBLE) LIGHT EMISSION FROM Ga(As1−x P x ) JUNCTIONS, Appl. Phys. Lett. 1, 82 (1962)
    [5] Shuji Nakamura, Masayuki Senoh and Takashi Mukai, High‐power InGaN/GaN double‐heterostructure violet light emitting diodes, Appl. Phys. Lett. 62, 2390 (1993)
    [6] 歐陽妙佳,氮化銦鎵/氮化鎵多重量子井光學特性之研究,國立交通大學光電工程研究所碩士論文(2004)
    [7] M.-T. Hoang, J. Yvonnet, A. Mitrushchenkov and G. Chambaud, First-principles based multiscale model of piezoelectric nanowires with surface effects, J. Appl. Phys. 113, 014309 (2013)
    [8] E. T. Yu, X. Z. Dang, P. M. Asbeck, and S. S. Lau, Spontaneous and piezoelectric polarization effects in III–V nitride heterostructures, J. Vac. Sci. Technol. B 17, 1742 (1999)
    [9] T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano, I. Akasaki, Y. Kaneko, S. Nakagawa, Y. Yamaoka, and N. Yamada, Determination of piezoelectric fields in strained GaInN quantum wells using the quantum-confined Stark effect, Appl. Phys. Lett. 73, 1691(1998)
    [10] 羅聖全, 科學基礎研究之重要利器─掃描式電子顯微鏡(SEM), 工業技術研究院材料與化工究所(2013)
    [11] 蔡定平, 奈米檢測技術, 國家實驗研究院儀器科技研究中心 (2009)
    [12] C. J. Brinker and G. W. Scherer, Sol-gel science : the physics and chemistry of sol-gel processing, Academic Press, Boston (1990)
    [13]https://zh.wikipedia.org/wiki/CIE1931%E8%89%B2%E5%BD%A9%E7%A9%BA%E9%97%B4
    [14] Aniruddha Konar, Amit Verma, Tian Fang, Pei Zhao, Raj Jana and Debdeep Jena, Charge transport in non-polar and semi-polar III-V nitride heterostructures, Semicond. Sci. Technol. 27, 024018 (2012)
    [15] Liverios Lymperakis and Jörg Neugebauer, Large anisotropic adatom kinetics on nonpolar GaN surfaces: Consequences for surface morphologies and nanowire growth, PHYSICAL REVIEW B 79, 241308 (2009)
    [16] Steven Albert, Ana Bengoechea-Encabo, Xiang Kong, Miguel A. Sánchez-Garcia, Achim Trampert, and Enrique Calleja, Correlation among Growth Conditions, Morphology, and Optical Properties of Nanocolumnar InGaN/GaN Heterostructures Selectively Grown by Molecular Beam Epitaxy, Cryst. Growth Des., 15, 2661−2666, (2015)
    [17] Hiroto Sekiguchi, Katsumi Kishino, and Akihiko Kikuchi, Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate, Applied Physics Letters 96, 231104 (2010)
    [18] Torsten Rieger*, Daniel Rosenbach, Gregor Mussler, Thomas Schäpers, Detlev Grützmacher, andMihail Ion Lepsa, Simultaneous Integration of Different Nanowires on Single Textured Si (100) Substrates, Nano Lett., 15, 1979−1986, (2015)
    [19] M. Wölz, S. Fernández-Garrido, C. Hauswald, O. Brandt, F. Limbach, L. Geelhaar, and H. Riechert, Indium Incorporation in InxGa1−xN/GaN Nanowire Heterostructures Investigated by Line-of-Sight Quadrupole Mass Spectrometry, Cryst. Growth Des. 12, 5686−5692, (2012)
    [20] Yangang Han, Xuegong Yu, Dong Wang, and Deren Yang, Formation of Various Pyramidal Structures on Monocrystalline Silicon Surface and Their Influence on the Solar Cells, Journal of Nanomaterials Volume (2013)
    [21] V. Consonni, Self-Induced Growth of GaN Nanowires by Plasma-assisted Molecular Beam Epitaxy, Phys. Status Solidi Rapid Res. Lett. 7 699 (2013)
    [22] J Wu, W Walukiewicz, KM Yu, JW Ager, EE Haller, H Lu, WJ Schaff, Small band gap
    bowing in In1-xGaxN alloys, Appl. Phys. Lett. 80, 4741 (2002)
    [23] N. Khan and J. Li, Effects of compressive strain on optical properties of InxGa1−xN/GaN quantum wells, Appl. Phys. Lett. 89, 151916 (2006)
    [24] K. Watanabe, N. Nakanishi, T. Yamazaki, J. R. Yang, S. Y. Huang, K. Inoke, J. T. Hsu, R. C. Tu, and M. Shiojiri, Atomic-scale strain field and In atom distribution in multiple quantum wells InGaN/GaN, Appl. Phys. Lett. 82, 715 (2003)

    無法下載圖示 校內:2021-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE