| 研究生: |
蔡念庭 Tsai, Nien-Ting |
|---|---|
| 論文名稱: |
在矽金字塔基板上成長白光氮化銦鎵奈米柱 White-light Emitted InGaN Nanorods Grown on Pyramided Si Substrate |
| 指導教授: |
吳忠霖
Wu, Chung-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 電漿輔助式分子束磊晶系統 、矽金字塔基板 、氮化銦鎵 、奈米柱 |
| 外文關鍵詞: | Plasma-assisted molecular beam epitaxy system, Pyramid Si substrate, InGaN, Nanorod |
| 相關次數: | 點閱:93 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文是利用電漿輔助式分子束磊晶系統(PA-MBE),在矽金字塔基板上進行成長氮化銦鎵(InGaN)奈米柱。由於金字塔結構的原因,使得在單一的成長條件下,調控出金字塔每一面上擁有不同銦和鎵的含量的奈米柱,因此造成金字塔四面發出不同波段的光,其製造出氮化銦鎵奈米柱發白光的效果。
由掃描電子顯微鏡(SEM)我們可以知道每一面奈米柱形貌不同,當銦通量(In flux)和鎵通量(Ga flux)直接撞擊到金字塔上,使得奈米柱直徑較大,當銦通量和鎵通量對於金字塔是遮蔽面,使得奈米柱直徑較小,其長度並沒有太大差異性,約為1μm。此外,氮通量(N flux)主要是控制奈米柱成長方向,所以在金字塔上成長氮化銦鎵奈米柱,明顯的發現奈米柱往頂部傾斜的現象。而光致螢光光譜(PL)量測結果,氮化銦鎵奈米柱成功發出白光,此光譜呈現一個連續現象,我們也透過陰極激發發光(CL)及能量色散X-射線光譜(EDS)量測來證明金字塔上四面氮化銦鎵奈米柱組成成分不同及發光不同。最後我們將成長的氮化銦鎵奈米柱施加一個機械力並進行光致螢光光譜量測,其結果發現光譜有藍移現象,其藍移約7nm。
In this study, InGaN nanorods were grown on pyramided Si substrate by plasma-assisted molecular beam epitaxy system (PA-MBE). We have grown white-light emitting InGaN nanorods on pyramid Si substrate with single flux ratio, thus causing different In and Ga contents and different emission colors on each face of pyramid Si substrate. From SEM images, the different morphologies of the nanorods are revealed on each face of pyramid Si substrate. When In flux and Ga flux impinges vertically on pyramid, the InGaN nanorods show large rod diameter. However, when In flux and Ga flux impinges with grazing incidence on pyramid result in nanorods with small diameter. The length of the nanorods is about 1 μm. In addition, the direction of N flux enables to control the growth direction of InGaN nanorods on pyramid substrate, which we obviously found nanorods to tilt toward the top of pyramid. PL spectrum measurement results show that the white light emission has been achieved successfully by InGaN nanorods, and the spectrum exhibits a continuous emission range. We have confirmed that each face of pyramid substrate has different composition and different light emission by using spatial resolved catholuminescence (CL) and electron energy loss spectroscopy (EDS) measurements. Finally, we apply the mechanical force on InGaN nanorods, and PL spectrum shows the emission peaks with blue shift of 7 nm due to the photo-piezoelectric effect of III-nitride semiconductors.
[1] Nils Asmus Kristian, Investigation of indium-rich InGaN alloys and kinetic growth regime of GaN, Thèse École polytechnique fédérale de Lausanne EPFL, n° 5776 (2013)
[2] Kai-Kuen Chang, Research of Ⅲ-Nitrides on Si(110) substrates:Epitaxial Growth and Fundamental Properties, 國立清華大學物理系碩士論文(2009)
[3] Hon-Way Lin, Yu-Jung Lu, Hung-Ying Chen, Hong-Mao Lee, and Shangjr Gwo, InGaN/GaN nanorod array white light-emitting diode, APPLIED PHYSICS LETTERS 97, 073101 (2010)
[4] Nick Holonyak Jr. and S. F. Bevacqua, COHERENT (VISIBLE) LIGHT EMISSION FROM Ga(As1−x P x ) JUNCTIONS, Appl. Phys. Lett. 1, 82 (1962)
[5] Shuji Nakamura, Masayuki Senoh and Takashi Mukai, High‐power InGaN/GaN double‐heterostructure violet light emitting diodes, Appl. Phys. Lett. 62, 2390 (1993)
[6] 歐陽妙佳,氮化銦鎵/氮化鎵多重量子井光學特性之研究,國立交通大學光電工程研究所碩士論文(2004)
[7] M.-T. Hoang, J. Yvonnet, A. Mitrushchenkov and G. Chambaud, First-principles based multiscale model of piezoelectric nanowires with surface effects, J. Appl. Phys. 113, 014309 (2013)
[8] E. T. Yu, X. Z. Dang, P. M. Asbeck, and S. S. Lau, Spontaneous and piezoelectric polarization effects in III–V nitride heterostructures, J. Vac. Sci. Technol. B 17, 1742 (1999)
[9] T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano, I. Akasaki, Y. Kaneko, S. Nakagawa, Y. Yamaoka, and N. Yamada, Determination of piezoelectric fields in strained GaInN quantum wells using the quantum-confined Stark effect, Appl. Phys. Lett. 73, 1691(1998)
[10] 羅聖全, 科學基礎研究之重要利器─掃描式電子顯微鏡(SEM), 工業技術研究院材料與化工究所(2013)
[11] 蔡定平, 奈米檢測技術, 國家實驗研究院儀器科技研究中心 (2009)
[12] C. J. Brinker and G. W. Scherer, Sol-gel science : the physics and chemistry of sol-gel processing, Academic Press, Boston (1990)
[13]https://zh.wikipedia.org/wiki/CIE1931%E8%89%B2%E5%BD%A9%E7%A9%BA%E9%97%B4
[14] Aniruddha Konar, Amit Verma, Tian Fang, Pei Zhao, Raj Jana and Debdeep Jena, Charge transport in non-polar and semi-polar III-V nitride heterostructures, Semicond. Sci. Technol. 27, 024018 (2012)
[15] Liverios Lymperakis and Jörg Neugebauer, Large anisotropic adatom kinetics on nonpolar GaN surfaces: Consequences for surface morphologies and nanowire growth, PHYSICAL REVIEW B 79, 241308 (2009)
[16] Steven Albert, Ana Bengoechea-Encabo, Xiang Kong, Miguel A. Sánchez-Garcia, Achim Trampert, and Enrique Calleja, Correlation among Growth Conditions, Morphology, and Optical Properties of Nanocolumnar InGaN/GaN Heterostructures Selectively Grown by Molecular Beam Epitaxy, Cryst. Growth Des., 15, 2661−2666, (2015)
[17] Hiroto Sekiguchi, Katsumi Kishino, and Akihiko Kikuchi, Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate, Applied Physics Letters 96, 231104 (2010)
[18] Torsten Rieger*, Daniel Rosenbach, Gregor Mussler, Thomas Schäpers, Detlev Grützmacher, andMihail Ion Lepsa, Simultaneous Integration of Different Nanowires on Single Textured Si (100) Substrates, Nano Lett., 15, 1979−1986, (2015)
[19] M. Wölz, S. Fernández-Garrido, C. Hauswald, O. Brandt, F. Limbach, L. Geelhaar, and H. Riechert, Indium Incorporation in InxGa1−xN/GaN Nanowire Heterostructures Investigated by Line-of-Sight Quadrupole Mass Spectrometry, Cryst. Growth Des. 12, 5686−5692, (2012)
[20] Yangang Han, Xuegong Yu, Dong Wang, and Deren Yang, Formation of Various Pyramidal Structures on Monocrystalline Silicon Surface and Their Influence on the Solar Cells, Journal of Nanomaterials Volume (2013)
[21] V. Consonni, Self-Induced Growth of GaN Nanowires by Plasma-assisted Molecular Beam Epitaxy, Phys. Status Solidi Rapid Res. Lett. 7 699 (2013)
[22] J Wu, W Walukiewicz, KM Yu, JW Ager, EE Haller, H Lu, WJ Schaff, Small band gap
bowing in In1-xGaxN alloys, Appl. Phys. Lett. 80, 4741 (2002)
[23] N. Khan and J. Li, Effects of compressive strain on optical properties of InxGa1−xN/GaN quantum wells, Appl. Phys. Lett. 89, 151916 (2006)
[24] K. Watanabe, N. Nakanishi, T. Yamazaki, J. R. Yang, S. Y. Huang, K. Inoke, J. T. Hsu, R. C. Tu, and M. Shiojiri, Atomic-scale strain field and In atom distribution in multiple quantum wells InGaN/GaN, Appl. Phys. Lett. 82, 715 (2003)
校內:2021-09-01公開