| 研究生: |
簡宜映 Chien, Yi-Ying |
|---|---|
| 論文名稱: |
探討五節芒生長於惡地與一般棲地時根內菌組成差異-以草山月世界為例 Investigating the differences in endosphere microbiome between Miscanthus floridulus growing in badlands and regular habitat: a case study of Caoshan Moon World. |
| 指導教授: |
黃兆立
Huang, Chao-Li |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 熱帶植物與微生物科學研究所 Institute of Tropical Plant Sciences |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 根內微生物 、五節芒 、根際微生物 、放線菌 、總體基因體學 |
| 外文關鍵詞: | endosphere, Miscanthus floridulus, rhizosphere, Actinobacteriota, metagenomics |
| 相關次數: | 點閱:99 下載:16 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來氣候變遷,乾旱頻傳,植物抗逆境的研究重要性日漸重要。除了植物本身的生理調控之外,植物-微生物交互作用的研究也受到注目。根內菌是指一群微生物生長在根內卻不造成疾病。許多研究提及根內菌對於植物的生物量、抗逆境能力有提升的效果。芒草以生長速度快、抗逆境等特性而聞名。本次的研究材料五節芒可以生長在惡地與一般草地,而前人研究提到不同棲地的芒草會有不同的根內菌組成。本研究探討五節芒生長在惡地與一般棲地組成差異,並分離內生菌。首先,在豐富度方面, Actinobacteriota 占惡地環境根內的50%,通常環境根內、惡地環境根圈土、通常環境根圈土都是Proteobacteria 占大多數。放線菌門的增加來自40種Amplicon sequence variants (ASV),這些ASV可以在根內與根圈土被發現,其中有20%是鏈黴菌屬 (Streptomyces) 。比較這些ASV不同環境的豐富度差異,有超過8成是根內比率大於根圈土比例,顯示在根內具有某種程度的篩選。用 clam test 分類之後,根內specialist放線菌明顯擴增,而根圈土specialist則是Proteobacteria明顯擴增。以功能性分析結果使用PCA分析clam test組別並未發現明顯差異。分離出的內生菌的組成與定序所得到的結果相差甚大,突顯出分離法與定序法的落差。本研究顯示出不同環境的內生菌組成差異。
Droughts have been becoming serious in the past decades. Endophytes are a group of symbiotic microbes in roots. Many research suggest that endophytes increase biomass, abiotic stress tolerance and of plants. Miscanthus is characterized by high growth rates, high abiotic stress tolerance. In the study, floridulus is able to grow in badland and regular habitat and has different endosphere microbiome under different environments. I investage the differences in endosphere microbiome between Miscanthus floridulus population at badlands and regular habitat and isolate drought stress related endophytes for further plant drought stess research. In endosphere from badlands, there are over 50% abundance attributable to Actinobacteriota. Nevertheless, Proteobacteria is most abundance in other sites, endosphere from regular habitat, rhizosphere from badlands and rhizosphere from regular habitat. The increase of Actinobacteriota in endosphere of badlands caused by 40 ASVs and these ASVs can be detected in both endosphere and rhizosphere. Microbiome compostion has no different among four groups. Shannon index, Chao1 richness index and NMDS plot display significant different between endosphere and rhizosphere. PICRUST2 analysis only present results in rhizosphere. After clam test analysis, specialist in endosphere show significnant enrichment in Actinobacteriota while specialist in rhizosphere show significant enrichment in Proteobacteria. The result shows the differences of endosphere microbiome.
王志強 (2018)臺東利吉地質公園適生植物調查及評估計畫 行政院農業委員會林務局委託研究計畫。
王偉、邱清安、蔡尚悳、郭礎嘉、曾彥學、曾喜育(2016) 苗栗火炎山地區植群分類之研究。中華林學季刊49:131-149。
行政院農業委員會水土保持局 (2003)。 水土保持植生綠化叢書系列-泥岩地區應用植物。
吳久雄 (2003)惡地創生機-臺南縣埤仔溝溪泥岩自然生態工法示範。行政院農業委員會136:25-29。
呂勝由(2002) 發現綠色臺灣-不可能的任務石灰岩植物。行政院農業委員會林務局、社團法人中華民國企業永續發展學會,第84-89頁。
周富三、楊遠波、李冠儀、廖俊奎(2010) 高雄縣壽山森林植群之研究。國家公園學報 20:15-24。
教育部。臺灣原住民族歷史語言文化大辭典。取自http://citing.hohayan.net.tw/
梁耀竹、曾喜育、邱清安、曾彥學 (2011) 臺灣西部惡地之植群調查。林業研究季刊33:23-36。
錢亦新、廖春芬、葉慶龍、王志強(2012) 十八羅漢山自然保護區植群調查之研究。中華林學季刊 45:299-308。
蘇詮智(2005) 高雄縣大崗山次生植群生態之研究。國立屏東科技大學森林系碩士學位論文。
Abdelrazek, S., Simon, P., Colley, M., Mengiste, T., Hoagland, L. (2020). Crop management system and carrot genotype affect endophyte composition and Alternaria dauci suppression. PloS One, 15, e0233783.
Barbosa, B., Boléo, S., Sidella, S., Costa, J., Duarte, M. P., Mendes, B., Cosentino, S. L., Fernando, A. L. (2015). Phytoremediation of heavy metal-contaminated soils using the perennial energy crops Miscanthus spp. and Arundo donax L. BioEnergy Research, 8, 1500–1511.
CABI, 2021. Miscanthus sinensis. Charlie Riches. In: invasive species compendium. wallingford, UK: CAB International. Retrieved from www.cabi.org/isc.
Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13, 581–583.
Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., & Madden, T. L. (2009). BLAST+: architecture and applications. BMC Bioinformatics, 10, 421.
Chazdon, R. L., Chao, A., Colwell, R. K., Lin, S.-Y., Norden, N., Letcher, S. G., Clark, D. B., Finegan, B. and Arroyo J. P. (2011). A novel statistical method for classifying habitat generalists and specialists. Ecology, 92, 1332–1343.
Christian, N., Herre, E.A. and Clay, K. (2019). Foliar endophytic fungi alter patterns of nitrogen uptake and distribution in Theobroma cacao. New Phytol, 222, 1573-1583.
Cope‐Selby, N., Cookson, A., Squance, M., Donnison, I., Flavell, R. and Farrar, K. (2017), Endophytic bacteria in Miscanthus seed: implications for germination, vertical inheritance of endophytes, plant evolution and breeding. GCB Bioenergy, 9, 57-77.
Eckert, B., Weber, O. B., Kirchhof, G., Halbritter, A., Stoffels, M., & Hartmann, A. (2001). Azospirillum doebereinerae sp. nov., a nitrogen-fixing bacterium associated with the C4-grass Miscanthus. International Journal of Systematic and Evolutionary Microbiology, 51, 17–26.
Etminani, F., & Harighi, B. (2018). Isolation and identification of endophytic bacteria with plant growth promoting activity and biocontrol potential from wild Pistachio Trees. The Plant Pathology Journal, 34, 208–217.
Ezaki, B., Nagao, E., Yamamoto, Y., Nakashima, S., & Enomoto, T. (2008). Wild plants, Andropogon virginicus L. and Miscanthus sinensis Anders, are tolerant to multiple stresses including aluminum, heavy metals and oxidative stresses. Plant Cell Reports, 27, 951–961.
Fitzpatrick, C. R., Copeland, J., Wang, P. W., Guttman, D. S., Kotanen, P. M., & Johnson, M. T. J. (2018). Assembly and ecological function of the root microbiome across angiosperm plant species. Proceedings of the National Academy of Sciences of the United States of America, 115, E1157–E1165.
Handelsman, J., Rondon, M. R., Brady, S. F., Clardy, J., & Goodman, R. M. (1998). Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chemistry & Biology, 5, R245–R249.
Hardoim, P. R., van Overbeek, L. S., Berg, G., Pirttilä, A. M., Compant, S., Campisano, A., Döring, M., & Sessitsch, A. (2015). The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews: MMBR, 79, 293–320.
Huang, C. L., Sarkar, R., Hsu, T. W., Yang, C. F., Chien, C. H., Chang, W. C., & Chiang, T. Y. (2020). Endophytic microbiome of biofuel plant Miscanthus sinensis (Poaceae) interacts with environmental gradients. Microbial Ecology, 80, 133–144.
Kaeberlein, T., Lewis, K., & Epstein, S. S. (2002). Isolating" uncultivable" microorganisms in pure culture in a simulated natural environment. Science, 296, 1127-1129.
Kandel, S., Joubert, P., & Doty, S. (2017). Bacterial endophyte colonization and distribution within plants. Microorganisms, 5, 77.
Kirchhof, G., Eckert, B., Stoffels, M., Baldani, JI., Reis, VM., Hartmann, A., (2001). Herbaspirillum frisingense sp. nov., a new nitrogen-fixing bacterial species that occurs in C4-fibre plants. International Journal of Systematic and Evolutionary Microbiology, 51, 157-68.
Kirchhof, G., Reis, V. M., Baldani, J. I., Eckert, B., Döbereiner, J., Hartmann, A. (1997). Occurrence, physiological and molecular analysis of endophytic diazotrophic bacteria in gramineous energy plants. Plant and Soil, 194, 45–55.
Li, F., He, X., Sun, Y., Zhang, X., Tang, X., Li, Y., & Yi, Y. (2019). Distinct endophytes are used by diverse plants for adaptation to karst regions. Scientific Reports, 9, 5246.
Mengistu, A. A. (2020). Endophytes: colonization, behaviour, and their role in defense mechanism. International Journal of Microbiology, 2020.
Miyamoto, T., Kawahara, M., & Minamisawa, K. (2004). Novel endophytic nitrogen-fixing clostridia from the grass Miscanthus sinensis as revealed by terminal restriction fragment length polymorphism analysis. Applied and Environmental Microbiology, 70, 6580–6586.
Naveed, M., Mitter, B., Yousaf, S. Pastar, M., Afzal, M., Sessitsch, A. (2014). The endophyte Enterobacter sp. FD17: a maize growth enhancer selected based on rigorous testing of plant beneficial traits and colonization characteristics. Biology and Fertility of Soils, 50, 249–262.
Passari, A. K., Mishra, V. K., Singh, G., Singh, P., Kumar, B., Gupta, V. K., Sarma, R. K., Saikia, R., Donovan, A. O., & Singh, B. P. (2017). Insights into the functionality of endophytic actinobacteria with a focus on their biosynthetic potential and secondary metabolites production. Scientific Reports, 7, 11809.
Paul, K., Saha, C., Nag, M., Mandal, D., Naiya, H., Sen, D., Mitra, S., Kumar, M., Bose, D., Mukherjee, G., Naskar, N., Lahiri, S., Das Ghosh, U., Tripathi, S., Sarkar, M. P., Banerjee, M., Kleinert, A., Valentine, A. J., Tripathy, S., Sinharoy, S., … Seal, A. (2020). A tripartite interaction among the Basidiomycete Rhodotorula mucilaginosa, N2-fixing endobacteria, and rice improves plant nitrogen nutrition. The Plant Cell, 32, 486–507.
Porras-Alfaro, A., & Bayman, P. (2011). Hidden fungi, emergent properties: endophytes and microbiomes. Annual Review of Phytopathology, 49, 291–315.
Potshangbam, M., Devi, S. I., Sahoo, D., & Strobel, G. A. (2017). Functional characterization of endophytic fungal community associated with Oryza sativa L. and Zea mays L. Frontiers in Microbiology, 8, 325.
Rodriguez, R. J., Henson, J., Van Volkenburgh, E., Hoy, M., Wright, L., Beckwith, F., Kim, Y. O., & Redman, R. S. (2008). Stress tolerance in plants via habitat-adapted symbiosis. The ISME Journal, 2, 404–416.
Romero, F. M., Rossi, F. R., Gárriz, A., Carrasco, P., & Ruíz, O. A. (2019). A bacterial endophyte from apoplast fluids protects canola plants
from different phytopathogens via antibiosis and induction of host resistance. Phytopathology, 109, 375–383.
Rubini, M. R., Silva-Ribeiro, R. T., Pomella, A. W., Maki, C. S., Araújo, W. L.,Dos Santos, D. R., & Azevedo, J. L. (2005). Diversity of endophytic fungal community of cacao (Theobroma cacao L.) and biological control of Crinipellis perniciosa, causal agent of Witches' Broom Disease. International Journal of Biological Sciences, 1, 24–33.
Shah, S., Shrestha, R., Maharjan, S., Selosse, M.-A., & Pant, B. (2018). Isolation and characterization of plant growth-promoting endophytic fungi from the roots of Dendrobium moniliforme. Plants, 8, 5.
Shiau, YJ., Wang, HC., Chen, TH. et al. (2017). Improvement in the biochemical and chemical properties of badland soils by thorny bamboo. Scientific Reports, 7, 40561.
Rashid, S., Charles, T.C., Glick B.R., (2012). Isolation and characterization of new plant growth-promoting bacterial endophytes. Applied Soil Ecology, 61, 217-224.
Simmons, T. B. (2020). Investigating the causes and consequences of drought-induced endophytic Actinobacteria enrichment. (Doctoral dissertation, University of California, Berkeley). Retrieved from https://escholarship.org/uc/item/6xn4m6r7
Su, CL., Zhang, FM., Sun, K. et al. (2019). Fungal endophyte Phomopsis liquidambari improves iron and molybdenum nutrition uptake of peanut in consecutive monoculture soil. Journal of Soil Science and Plant Nutrition, 19, 71–80.
The Plant List (2013). Version 1.1. Published on the Internet; Retrieved from http://www.theplantlist.org/(accessed 1st January).
World Checklist of Selected Plant Families. Facilitated by the Royal Botanic Gardens, Kew. Published on the internet; Retrieved from http://wcsp.science.kew.org/
Wani, Z. A., Ashraf, N., Mohiuddin, T., & Riyaz-Ul-Hassan, S. (2015). Plant-endophyte symbiosis, an ecological perspective. Applied Microbiology and Biotechnology, 99, 2955–2965.
Xie X-G, Zhang F-M, Yang T, Chen Y, Li X-G, Dai C-C. (2019). Endophytic fungus drives nodulation and N2 fixation attributable to specific root exudates. MBio, 10: e00728-19.
Xu, L., Naylor, D., Dong, Z., Simmons, T., Pierroz, G., Hixson, K, K., Kim, Y. M., Zink, E. M., Engbrecht, K. M., Wang, Y., Gao, C., DeGraaf, S., Madera, M. A., Sievert, J. A., Hollingsworth, J., Birdseye, D., Scheller, H. V., Hutmacher, R., Dahlberg, J., Jansson, C., Taylor, J. W., Lemaux, P. G., Coleman-Derr, D. (2018). Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria. Proceedings of the National Academy of Sciences, 115, E4284-E4293.
Zhai, X., Luo, D, Li, X., Han, T., Jia, M., Kong, Z., Ji, J., Rahman, K., Qin, L., and Zheng., C. (2018). Endophyte Chaetomium globosum D38 promotes bioactive constituents accumulation and root Production in Salvia miltiorrhiza. Frontiers in Microbiology, 8, 2694.
Zub, H.W., Brancourt-Hulmel, M. (2010). Agronomic and physiological performances of different species of Miscanthus, a major energy crop. a review. Agronomy for Sustainable Development, 30, 201–214.