簡易檢索 / 詳目顯示

研究生: 林昆平
Lin, Kun-Ping
論文名稱: 噴覆成型製作Mg-Cu-Gd塊狀金屬玻璃及其性質及加工成型性之研究
Study of the Properties and Workability of the Mg-Cu-Gd Bulk Metallic Glass Synthesized by Spray Forming
指導教授: 曹紀元
Tsao, Chin-Yuan
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 112
中文關鍵詞: 噴覆成型鎂基塊狀玻璃金屬非晶質結晶活化能高溫壓縮背向式擠型
外文關鍵詞: Spray forming, Mg-based, Bulk Metallic glass, BMG, amorphous, activation energy, hot compression, backward extrusion
相關次數: 點閱:119下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇研究使用具有快速冷卻效果的¬噴覆成型製程來製備Mg-Cu-Gd塊狀玻璃金屬。所噴覆出的Mg-Cu-Gd玻璃金屬直徑有300mm及最大厚度有10mm。利用X光繞射分析(XRD)及穿透式電子顯微鏡(TEM)來檢測所噴覆出的材料之結構,並確定為非晶質材料。熱差式掃描分析(DSC)檢測此材料之上下區的玻璃轉換溫度及結晶溫度,而等溫熱差式掃描分析用來決定此材料在不同持溫溫度的潛伏時間,並計算其結晶活化能。此塊狀玻璃金屬的玻璃形成能力由Trg及γ等參數來做比較。掃描式(SEM)顯微鏡以及電子微探儀(EPMA)觀察其微結構及化學組成,其組成為Mg68Cu22.6Gd9.4。在不同位置的微硬度由維氏硬度試驗檢測。壓縮方面,進行三種不同的應變速率(5×10-2、5×10-3、5×10-4)下,得到所噴覆出的塊狀玻璃金屬之壓縮應力應變曲線。兩種型態的表面粗糙度也在壓縮實驗時比較其表面影響。為探討其加工成型,有在過冷液體的溫度範圍下(Tg<T<Tx) 進行壓縮試驗,並計算出此材料之Strain rate sensitivity,高溫壓縮後的試片亦進行TEM的檢測,觀察其奈米結晶的情況。最後進行擠型比例9以及36的背向式擠型,將擠型數據與熱壓數據進行比較分析。

    The Mg-Cu-Gd bulk metallic glass (BMG) was synthesized by the spray forming process, a rapid solidification process. The spray-formed Mg-Cu-Gd BMG has a diameter of 300 mm and a maximum thickness of 10mm.The degree of crystallization and structure was determined by X-Ray Diffraction analyses and TEM, which shows amorphous structure. Differential Scanning Calorimeter analyses were performed to establish the glass transition and crystallization temperatures of the spray-formed Mg-Cu-Gd BMGs at top, and bottom positions. Isothermal DSC was also performed to determine the incubation times at various temperatures and its activation energy. The GFA (Glass Forming Ability) was determined with various glass forming criteria such as Trg and γ. Microstructures and chemical compositions were characterized and analyzed by SEM and EPMA, which has composition of Mg68Cu22.6Gd9.4 MHV hardnesses at different locations were measured by micro-Vickers hardness tester. The compressive stress vs. strain relationships of the spray-formed BMGs were obtained by compressive testing at various strain rates, 5×10-2, 5×10-3 and 5×10-4. Two types of the specimen surface roughness were prepared for the compressive tests. The effects of the strain rate and the specimen surface roughness on the compressive properties were studied. To know the workability, the compression test at temperature between glass transforming and crystallization was studied. TEM was used to confirm the structure and the nanocrystal. Final, there was a backward extrusion test by ratio of 9 and 36. The data was compare with hot compression test.

    摘要 I Abstract II 目錄 IV 表格目錄 VIII 圖片目錄 X 第1章、 前言 1 1-1 塊狀金屬玻璃特性 1 1-2 材料選擇 2 第2章、 文獻回顧與理論基礎 3 2-1 塊狀金屬玻璃歷史(Bulk metallic glasses) 3 2-2 金屬玻璃製造方法 4 2-2-1 噴覆成型Spray Forming 4 2-2-2 噴射鑄造 6 2-2-3 薄帶製作 7 2-3 玻璃的形成 8 2-4 玻璃形成能力(glass forming ability, GFA) 9 2-5 熱分析理論 10 2-5-1 非恆溫熱分析 11 2-6 機械性質 12 2-6-1 微硬度 12 2-6-2 韌性 12 2-6-3 室溫壓縮性質 13 2-6-4 高溫壓縮性質 14 2-7 成型製程圖(Process Map) 16 2-8 應力誘發結晶(stress-induced crystallization) 17 2-9 擠型形式與分析理論 18 第3章、 實驗步驟與分析參數及條件 21 3-1 製備Spray forming之BMG 21 3-2 X光繞射X-Ray diffraction (XRD) 、TEM之結構鑑定 22 3-3 Differential Scanning Calorimeter (DSC) 23 3-4 SEM、EPMA成份鑑定 23 3-5 微硬度Micro-hardness 24 3-6 壓縮Compression 24 3-6-1 室溫壓縮 25 3-6-2 過冷液溫度範圍壓縮(Tg<T<Tx) 25 3-7 背向擠型 26 第4章、 結果與討論 28 4-1 Spray Forming 製作出BMG之性質 28 4-1-1 EPMA成份鑑定及金相觀察 29 4-1-2 XRD及TEM之結構鑑定 29 4-1-3 DSC、結晶活化能及玻璃形成能力參數 30 4-1-4 MHv 31 4-2 壓縮測試 32 4-2-1 室溫壓縮 32 4-2-2 高溫壓縮 35 4-3 擠型 40 第5章、 結論 44 引用文獻 48

    1. Inoue, Akihisa, Tao Zhang, and Tsuyoshi Masumoto, Zr-Al-Ni Amorphous Alloys with High Glass Transition Temperature and Significant Supercooled Liquid Region. Materials Transactions, JIM, 1990. 31(3): p. 177-183.
    2. Spaepen, Frans, A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metallurgica, 1977. 25(4): p. 407-415.
    3. Chang, Y. C., T. H. Hung, H. M. Chen, J. C. Huang, T. G. Nieh, and C. J. Lee, Viscous flow behavior and thermal properties of bulk amorphous Mg58Cu31Y11 alloy. Intermetallics, 2007. 15(10): p. 1303-1308.
    4. Wang, W. H., C. Dong, and C. H. Shek, Bulk metallic glasses. Materials Science and Engineering: R: Reports, 2004. 44(2-3): p. 45-89.
    5. Ashby, M. F. and A. L. Greer, Metallic glasses as structural materials. Scripta Materialia, 2006. 54(3): p. 321-326.
    6. Zheng, Qiang, Jian Xu, and Evan Ma, High glass-forming ability correlated with fragility of Mg--Cu(Ag)--Gd alloys. Journal of Applied Physics, 2007. 102(11): p. 113519-5.
    7. Xu, Ying-Kun, Han Ma, Jian Xu, and En Ma, Mg-based bulk metallic glass composites with plasticity and gigapascal strength. Acta Materialia, 2005. 53(6): p. 1857-1866.
    8. 陳海明, 鎂銅銀釓塊狀非晶質合金之玻璃形成能力及機械性質. 2006國立中山大學材料科學研究所碩士論文.
    9. Chen, H. S., Thermodynamic considerations on the formation and stability of metallic glasses. Acta Metallurgica, 1974. 22(12): p. 1505-1511.
    10. Inoue., A., A. Kato., T. Zhang., S. G. Kim., and T. Masumoto., Mg-Cu-Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method. Materials Transactions, JIM, 1991. 32(7): p. 609-616.
    11. Xi, X. K., D. Q. Zhao, M. X. Pan, and W. H. Wang, On the criteria of bulk metallic glass formation in MgCu-based alloys. Intermetallics, 2005. 13(6): p. 638-641.
    12. Yuan, Guangyin and Akihisa Inoue, The effect of Ni substitution on the glass-forming ability and mechanical properties of Mg-Cu-Gd metallic glass alloys. Journal of Alloys and Compounds, 2005. 387(1-2): p. 134-138.
    13. Chang, L. J., J. S. C. Jang, B. C. Yang, and J. C. Huang, Crystallization and thermal stability of the Mg65Cu25-xGd10Agx (x??-10) amorphous alloys. Journal of Alloys and Compounds, 2007. 434-435: p. 221-224.
    14. Soubeyroux, J. L., S. Puech, P. Donnadieu, and J. J. Blandin, Synthesis and mechanical behavior of nanocomposite Mg-based bulk metallic glasses. Journal of Alloys and Compounds, 2007. 434-435: p. 84-87.
    15. Zheng, Q., S. Cheng, J. H. Strader, E. Ma, and J. Xu, Critical size and strength of the best bulk metallic glass former in the Mg-Cu-Gd ternary system. Scripta Materialia, 2007. 56(2): p. 161-164.
    16. Akihisa Inoue, Tao Zhang, and Tsuyoshi Masumoto, Al-La-Ni Amorphous Alloys with a Wide Supercooled Liquid Region Materials Transactions, JIM, 1989. 30(12): p. 965-972.
    17. Lee, S. Y., T. S. Kim, J. K. Lee, H. J. Kim, D. H. Kim, and J. C. Bae, Effect of powder size on the consolidation of gas atomized Cu54Ni6Zr22Ti18 amorphous powders. Intermetallics. 14(8-9): p. 1000-1004.
    18. Hufnagel, T. C., T. Jiao, Y. Li, L.-Q. Xing, and K. T. Ramesh, Deformation and failure of Zr57Ti5Cu20Ni8Al10 bulk metallic glass under quasi-static and dynamic compression. Materials Research Society, 2002. 17(6).
    19. Keryvin, V., V. H. Hoang, and J. Shen, Hardness, toughness, brittleness and cracking systems in an iron-based bulk metallic glass by indentation. Intermetallics, 2009. 17(4): p. 211-217.
    20. Huang, Y. J., J. Shen, Y. L. Chiu, J. J. J. Chen, and J. F. Sun, Indentation creep of an Fe-based bulk metallic glass. Intermetallics, 2009. 17(4): p. 190-194.
    21. Akihisa Inoue, Nobuyuki Nishiyama, and Takayuki Matsuda, Preparation of Bulk Glassy Pd40Ni10Cu30P20 Alloy of 40 mm in Diameter by Water Quenching. Materials Transactions, JIM, 1996. 37(2): p. 181-184.
    22. Men, H., W. T. Kim, and D. H. Kim, Glass formation and crystallization behavior in Mg65Cu25Y10-xGdx (x=0, 5 and 10) alloys. Journal of Non-Crystalline Solids, 2004. 337(1): p. 29-35.
    23. 吳學陞, 工業材料, 1999. 149: p. 154-165.
    24. Lu, Z. P. and C. T. Liu, A new glass-forming ability criterion for bulk metallic glasses. Acta Materialia, 2002. 50(13): p. 3501-3512.
    25. Du, X. H., J. C. Huang, C. T. Liu, and Z. P. Lu, New criterion of glass forming ability for bulk metallic glasses. Journal of Applied Physics, 2007. 101(8): p. 086108.
    26. Tanaka, Hajime, Relationship among glass-forming ability, fragility, and short-range bond ordering of liquids. Journal of Non-Crystalline Solids, 2005. 351(8-9): p. 678-690.
    27. Ted Guo, M. L., Chi Y. A. Tsao, J. C. Huang, and J. S. C. Jang, Crystallization behavior of spray-formed and melt-spun Al89La6Ni5 hybrid composites with amorphous and nanostructured phases. Materials Science and Engineering: A, 2005. 404(1-2): p. 49-56.
    28. Matusita, Kazumasa and Sumio Sakka, Kinetic study of crystallization of glass by differential thermal analysis--criterion on application of Kissinger plot. Journal of Non-Crystalline Solids, 1980. 38-39(Part 2): p. 741-746.
    29. Kissinger, H.E., Reaction kinetics in differential thermal analysis. Analytical Chemistry, 1957. 29: p. 1702-1706.
    30. Inoue, Akihisa, Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Materialia, 2000. 48(1): p. 279-306.
    31. Lee, Kwang Seok, Hyun-Joon Jun, and Young Won Chang, Flow characteristics and formability of a bulk metallic glass with a wide undercooled liquid region. Materials Science and Engineering: A, 2007. 449-451: p. 941-944.
    32. Kawamura, Yoshihito, Toshihiro Nakamura, Hidemi Kato, Hideo Mano, and Akihisa Inoue, Newtonian and non-Newtonian viscosity of supercooled liquid in metallic glasses. Materials Science and Engineering A, 2001. 304-306: p. 674-678.
    33. Salimon, A. I., M. F. Ashby, Y. Bréchet, and A. L. Greer, Bulk metallic glasses: what are they good for? Materials Science and Engineering A, 2004. 375-377: p. 385-388.
    34. Park, J. S., H. K. Lim, J. H. Kim, H. J. Chang, W. T. Kim, D. H. Kim, and E. Fleury, In situ crystallization and enhanced mechanical properties of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 alloy by cold rolling. Journal of Non-Crystalline Solids, 2005. 351(24-26): p. 2142-2146.
    35. Jun, H. J., K. S. Lee, S. C. Yoon, H. S. Kim, and Y. W. Chang, Finite-element analysis for high-temperature deformation of bulk metallic glasses in a supercooled liquid region based on the free volume constitutive model. Acta Materialia, 2010. 58(12): p. 4267-4280.
    36. de Hey, P., J. Sietsma, and A. van den Beukel, Structural disordering in amorphous Pd40Ni40P20 induced by high temperature deformation. Acta Materialia, 1998. 46(16): p. 5873-5882.
    37. Cohen, Morrel H. and Gary S. Grest, The nature of the glass transition. Journal of Non-Crystalline Solids, 1984. 61-62(Part 2): p. 749-759.
    38. Cohen, Morrel H. and David Turnbull, Molecular Transport in Liquids and Glasses. The Journal of Chemical Physics, 1959. 31(5): p. 1164-1169.
    39. Taub, A. I. and F. E. Luborsky, Creep, stress relaxation and structural change of amorphous alloys. Acta Metallurgica, 1981. 29(12): p. 1939-1948.
    40. Johnson, William L., Jun Lu, and Marios D. Demetriou, Deformation and flow in bulk metallic glasses and deeply undercooled glass forming liquids--a self consistent dynamic free volume model. Intermetallics, 2002. 10(11-12): p. 1039-1046.
    41. Prasad, Y. V. R. K. and T. Seshacharyulu, Processing maps for hot working of titanium alloys. Materials Science and Engineering A, 1998. 243(1-2): p. 82-88.
    42. Prasad, Y., Author’s reply: Dynamic materials model: Basis and principles. Metallurgical and Materials Transactions A, 1996. 27(1): p. 235-236.
    43. Prasad, Y., H. Gegel, S. Doraivelu, J. Malas, J. Morgan, K. Lark, and D. Barker, Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242. Metallurgical and Materials Transactions A, 1984. 15(10): p. 1883-1892.
    44. Schuh, C. A. and A. C. Lund, Atomistic basis for the plastic yield criterion of metallic glass. Nature Materials, 2003. 2(7): p. 449-452.
    45. Hajlaoui, K., A. R. Yavari, B. Doisneau, A. LeMoulec, W. J. Botta F, G. Vaughan, A. L. Greer, A. Inoue, W. Zhang, and A. Kvick, Shear delocalization and crack blunting of a metallic glass containing nanoparticles: In situ deformation in TEM analysis. Scripta Materialia, 2006. 54(11): p. 1829-1834.
    46. Chen, F. H., K. F. Chang, Chi Y. A. Tsao, M. L. T. Guo, J. C. Huang, and J. S. C. Jang, Microstructures and mechanical behaviors of Mg58Cu31Gd11 and Mg65Cu25Gd10 amorphous alloys synthesized by injection casting and melt spinning. Journal of Alloys and Compounds, 2009. 483(1-2): p. 32-36.
    47. Hsieh, P. J., S. C. Lin, H. C. Su, and J. S. C. Jang, Glass forming ability and mechanical properties characterization on Mg58Cu31Y11-xGdx bulk metallic glasses. Journal of Alloys and Compounds, 2009. 483(1-2): p. 40-43.
    48. Lee, Kwang Seok, Jung-Hwan Lee, and Jgen Eckert, On the structural relaxation of bulk metallic glass under warm deformation. Intermetallics, 2009. 17(4): p. 222-226.
    49. van den Beukel, A. and J. Sietsma, The glass transition as a free volume related kinetic phenomenon. Acta Metallurgica et Materialia, 1990. 38(3): p. 383-389.

    下載圖示 校內:2016-09-09公開
    校外:2016-09-09公開
    QR CODE