簡易檢索 / 詳目顯示

研究生: 李志偉
Li, Chih-Wei
論文名稱: 氧化鋅銦錫薄膜電晶體的研究及其光電應用
Investigation of ZITO Thin Film Transistor and It’s Optoelectronic Application
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 81
中文關鍵詞: 氧化鋅銦薄膜電晶體
外文關鍵詞: ZITO, ZnO, Thin Film Transistor
相關次數: 點閱:87下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文之主要是利用共濺鍍系統成長以氧化鋅為基底之薄膜。透過調整氧氣濃度以及濺鍍功率而得到功能性不同之薄膜。在複合型氧化鋅銦錫薄膜之製備中,透過調變氧化鋅及銦錫氧化物的比例以及氧氣濃度以達到改善原本氧化鋅薄膜之目的。
    首先,我們應用氧化鋅薄膜做為主動層與二氧化矽做為閘極介電層來製作薄膜電晶體,可以得到場效遷移率3.84 cm2/Vs,臨界電壓1.5 V,次臨界擺幅0.48 V,電流開關比4.6x104。此外,我們發現濺鍍功率以及氧含量會造成元件光電特性之影響,然後,在較好特性之元件參數中,我們透過參雜氧化銦以增強元件之特性。
    在實驗第二部分,我們把非晶氧化鋅銦錫薄膜與二氧化矽做為閘極介電層來製作薄膜電晶體作在玻璃基板上。在室溫下沉積下得到臨界電壓0.9 V,電流開關比4.7x105,次臨界擺幅0.294 V,場效遷移率5.32 cm2/Vs。此外,我們指出元素含量組成對元件電特性之影響,然後,改善電特性的確切來源,並最佳化氧化鋅銦錫薄膜中,鋅,銦和錫組分的影響,以改善元件特性。
    最後,我們對於元件之可靠度做了一些探討。每經過兩個禮拜之後,我們拿先前作的元件再重複量測,發現氧化鋅銦錫薄膜電晶體其退化情型比其氧化鋅薄膜電晶體嚴重。對於氧化鋅和氧化鋅銦錫薄膜電晶體來說:臨界電壓分別偏移了1.3V, 0.6V;電流開關比分別減少了大概10倍,30倍;次臨界擺幅分別變差了2倍和3倍。此外,元件除了對於時間有影響之外,照光的環境下量測,我們發現其退化現象。氧化鋅薄膜電晶體在當閘極電壓為0 V,波長為330 nm紫外光照光下,量測電流-電壓從3.0×10-9 A 上升至5.1×10-8 A,在偏壓為0 V與330nm的光照下所量測到的照光電流/暗電流差距約為55倍。在非晶氧化鋅銦錫光電晶體部分,在當閘極電壓為0 V,波長為330 nm紫外光照光下,量測電流-電壓從5.0×10-9 A 上升至6.1×10-7 A,在偏壓為0 V與330nm的光照下所量測到的照光電流/暗電流差距約為87倍。

    In present study, it is the discussion of zinc oxide based thin film by sputtering. By adjusting the oxygen partial pressure or the sputtering power, the multifunctional thin films will be obtained. In the zinc indium tin oxide films prepared experiments, it is modulating the elements ratio or oxygen pressure to improve the ZnO thin films.
    First, we applied ZnO thin film as the active layer to the fabrication of TFT with SiO2 gate dielectric. It was found that the field effect mobility was 3.84 cm2/Vs, the threshold voltage of 1.5 V, the subthreshold swing of 0.48 V/decade, the current ratio of 4.6x104. Furthermore, we found that the oxygen partial pressure and the sputtering power would change the optical and electrical properties. Then, we tuned the parameter from the better devices to improve the electrical characteristics. In a short, we doped the ITO into the ZnO thin film to enhance the characteristics of TFTs.
    In the second part of the experiment, we applied amorphous zinc indium tin oxide film as the active layer to the fabrication of TFT with SiO2 gate dielectric. A-ZITO TFT showed the good performance, like the threshold voltage of 0.9 V, the current ratio of 4.7x105, the subthreshold swing 0.294 V/decade, the field-effect mobility of 5.32 cm2/Vs. In addition, the effect of element composition on the device performance of a-ZITO TFTs was investigated. Then, the exact origin of the improvement of electrical characteristics, and optimize the effects of the In, Zn, and Sn fractions in ZITO thin films, in order to improve the performance of a device.
    Finally, we did some research about the reliability of the TFTs. After every two weeks, we used the ZnO based TFTs to do some measurements. We found that degeneration of ZITO TFT is more serious. For ZnO TFT and ZITO TFT: the threshold voltage shift of 1.3V, 0.6V; current ratio decrease about one order, three order; subthreshold swing become worse than doubled, three times. In addition, devices would change the characteristics not only for time but also the illumination. We found degradation under the illumination. The ZnO TFTs at a gate voltage of 0 V and a wavelength of 330 nm UV light illumination, the measured current - voltage from 3.0 × 10-9 (A) up to 5.1 × 10-8 (A), the gate bias voltage is 0 V with 330nm light, which are measured according to the photocurrent / dark current of 55 times. In the a-ZITO TFTs, when the gate voltage of 0 V, a wavelength of 330 nm UV light illumination, the measured current - voltage from 5.0 × 10-9 (A) up to 6.1 × 10-7 (A), the bias is 0 V and 330nm light measured under illumination-current / dark current of 87 times.

    Contents 摘要 I Abstract III 誌謝 V Contents VI Figure Captions IX List of Tables XI Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Overview of amorphous oxide semiconductor 2 1.2.1 ZnO-based transparent conductive oxide (TCO) thin films 3 1.2.2 Compound transparent conductive oxide (TCO) thin films 4 1.2.3 Amorphous semiconducting materials 6 1.3 The application of amorphous ZnO based thin film transistors 7 1.3.1 The application of ZnO thin film transistors 7 1.3.2 The application of amorphous Zn-In-Sn-O (a-ZITO) thin film transistors 8 1.4 Overview of Ultraviolet photodetectors 9 1.5 Organization of Dissertation 10 Reference 13 Chapter 2 Fundamental of amorphous oxide semiconductor 19 2.1 Amorphous ZnO-based oxide semiconductor 19 2.1.1 Electronic structure of AOS 19 2.1.2 Electronic properties of a-ZITO 20 2.2 Important Parameters 20 2.2.1 Field-Effect Mobility 21 2.2.2 Threshold Voltage (VT) 21 2.2.3 Ratio (Ion/off) 22 2.2.4 Subthreshold Swing (ss) 22 2.2.5 Responsivity 22 2.3 Fabrication System 23 2.3.1 RF Sputtering System 23 2.3.2 Atomic Force Microscopes 24 2.3.3 X-ray Diffraction Analysis (XRD) 25 Reference 31 Chapter 3 ZnO TFTs with SiO2 dielectric layers 32 3-1 Introduction 32 3-2 Experimental procedure 33 3.3 The physical and optoelectronic analysis of ZnO thin film 35 3.4 Characterization of ZnO TFTs 36 3.4.1 Varying the Oxygen Flow Rate 36 3.4.2 Varying the Power of ZnO 38 3.5 Characterization of ZnO Photodetectors 38 3.5.1 Fabricated of a ZnO Photodetector 38 3.5.2 Characterization of ZnO PDs 39 3.6 Summary 40 Reference 48 Chapter 4 a-ZITO TFTs with SiO2 dielectric layers 49 4.1 Introduction 49 4.2 Experimental procedure 50 4.3 The physical and optoelectronic analysis of ZITO thin film 51 4.4 Characterization of ZITO TFTs 54 4.4.1 Varying the Zn Content 54 4.4.2 Varying the Oxygen Flow Rate 55 4.4.3 Varying the Amount of ITO 56 4.5 Summary 57 Chapter 5 Reliability of the ZnO based TFTs 69 5.1 Introduction 69 5.2 Time reliability of ZnO based TFTs with SiO2 dielectric layers 70 5.3 Light reliability of ZnO based TFTs with SiO2 dielectric layers 70 5.4 Summary 72 References 77 Chapter 6 Conclusion and future work 79 6.1 Conclusion 79 6.2 Future work 80

    chap1
    [1] W. E. Spear and P. G. Le Comber, “Substitutional doping of amorphous silicon,” Solid State Communications, vol. 17, pp. 1193–1196, 1975.
    [2] H. Hosono, “Ionic amorphous oxide semiconductors: Material design,carrier transport, and device application” Journal of Non-Crystalline Solids, vol.352, pp. 851–858, 2006.
    [3] K. Nomura, A. Takag, T. Kamiya, H. Ohta, M. Hirano and H. Hosono, “Amorphous Oxide Semiconductors for High-Performance Flexible Thin-Film Transistors,” Japanese Journal of Applied Physics, Vol. 45, pp. 4303–4308, 2006.
    [4] L. Zhang, H. Zhang, Y. Bai, J. W. Ma, J. Cao, X. Y. Jiang, Z. L. Zhang, “Enhanced performances of ZnO-TFT by improving surface properties of channel layer,” Solid State Communications, vol. 146 , pp. 387–390, 2008.
    [5] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, vol.432, pp. 489–491, Nov. 2004.
    [6] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, “Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor,” Science, vol. 300, pp. 1269-1271, 2003.
    [7] N. C. Su, S. J. Wang, and A. Chin, “High-Performance InGaZnO Thin-Film Transistors Using HfLaO Gate Dielectric,” IEEE Elec. Dev. Lett., vol. 30, No. 12, 2009.
    [8] W. C. Shin, H. Moon, S. Yoo, Y. X. Li, and B. J. Cho, “Low-voltage high-performance pentacene thin-film transistors with ultrathin PVP/high-κ HfLaO hybrid gate dielectric,” IEEE Elec. Dev. Lett., vol. 30, pp. 1308-1310, 2010.
    [9] O. K.Varghese, M. Paulose, C. A. Grimes, “Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells,” Nature Nanotechnology, vol. 4, 592-597, 2009.
    [10] M. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. Yang, “Nanowire dye-sensitized solar cells,” Nature Materials , vol. 4, pp. 455-459, 2005.
    [11] Chopra K. L., Major S. and Pandya D. K., “Transparent conductors—A status review,” Thin Solid Films, vol. 102,pp. 1-46, 1983.
    [12] B.Y. Oh, M. C. Jeong, D. S. Kim, W. Lee, J. M. Myoung, “Post-annealing of Al-doped ZnO films in hydrogen atmosphere,” Journal of Crystal Growth, vol.281, pp. 475–480, 2005.
    [13] K. Matsubara, P. Fons, K. Iwata, A. Yamada, K. Sakurai, H. Tampo and S. Niki, “ ZnO transparent conducting films deposited by pulsed laser deposition for solar cell applications,” Thin Solid Films, vol.431-432, pp. 369-372 ,2003.
    [14] M.F.A.M. van Hest, M.S. Dabney, J.D. Perkins, D.S. Ginley, and M.P. Taylor, “Titanium-doped indium oxide: A high-mobility transparent conductor,” Applied Physics Letters, vol. 87, pp. 032111, 2005.
    [15] H. M. Ali, H. A. Mohamed, and S. H. Mohamed, Eur, “Enhancement of the optical and electrical properties of ITO thin films deposited by electron beam evaporation technique,” Journal of Applied Physics, vol. 31, pp. 87-93, 2005.
    [16] H. Yue1, A. Wu, J. Hu, X. Zhang, T. Li, “Relationship between structure and functional properties of the ZnO:Al thin films,” Materials Science Forum, Vols. 675-677, pp 1275-1278, 2011.
    [17] B. Y. Oh, M. C. Jeong, W. Lee, and J. M. Myoung, ‘‘Properties of Transparent Conductive ZnO Al Films Prepared by Co-Sputtering,’’ Journal of Crystal Growth, vol. 274, pp. 453–457, 2005.
    [18] K. L. Chopra, S. Major, and D. K. Pandya, “Transparent conductors-A status review,” Thin Solid Films, vol. 102, pp. 1-46, 1983.
    [19] A. L. Dawar and J. C. Joshi, “Semiconducting transparent thin films,” Journal of Materials Science, vol. 19, pp. 1–23, 1984.
    [20] T. Minami, “Transparent and conductive multicomponent oxide films prepared by magnetron sputtering,” Journal of Vacuum Science & Technology A, Vol. 17, pp. 1765-1772, 1999.
    [21] T. Minami, “Present Status of Transparent Conducting Oxide Thin-Film Development for Indium-Tin-Oxide (ITO) Substitutes”, Thin Solid Films, Vol. 516, pp. 5822-5828, 2008.
    [22] Y. Shigesato, D. C. Paine, and T. E. Haynes: Adv. Mater. (Weinheim, Ger.) 4, pp. 503,1994.
    [23] J. Cui, A. Wang, N. L. Edleman, J. Ni, P. Lee, N. R. Armstrong, and T. Marks: Adv. Mater. (Weinheim, Ger.) 13, pp. 1476, 2001.
    [24] Y. Park, V. Choong, Y. Gao, B. R. Hsieh, and C. W. Tang, “Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy,” Applied Physics Letters, vol.68, p.2699-2701, 1996.
    [25] D.H Kim, M.R. Park, H.J. Lee and G.H. Lee, “Thickness dependence of electrical properties of ITO film deposited on a plastic substrate by RF magnetron sputtering”, Applied Surface Science, vol.253, pp.409-411, 2006.
    [26] C. W. Ow-Yang, H. Y. Yeom, D. C. Paine, ”Fabrication of transparent conducting amorphous Zn-Sn-In-O thin films by direct current magnetron sputtering,” Thin Solid Films, vol. 516, pp. 3105-3111, 2008.
    [27] D. S. Liu, C. S. Sheu, C. T. Lee, and C. H. Lin, “Thermal Stability of Indium Tin Oxide Thin Films Co-sputtered with Zinc Oxide,” Thin Solid Films, vol. 516, pp.3196-3203, 2008.
    [28] H. Hosono, N. Kikuchi, N. Ueda and H. Kawazoe, “Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples.” Journal of Non-Crystalline Solids, vol.198–200, pp. 165–169, 1996.
    [29] M. Orita, H. Ohta and M. Hirano, “Amorphous transparent conductive oxide”, Philosophical Magazine, vol.81, pp. 501-515, 2001.
    [30] N. F. Mott, “Silicon dioxide and the chalcogenide semiconductors; similarities and differences.” Advances in Physics, vol. 26, pp. 363–391, 1977.
    [31] M. Orita and M. Hirano, “Electronic structure and transport properties in the transparent amorphous oxide semiconductor 2CdO•GeO2.” Physical Review B, vol. 66, 35203, 2002.
    [32] P. K. Weifer, H. Borkan, G. Sadasiv, L. Meray-Horvath, and F. V. Shallcross, “Integrated Circuits Incorporating Thin-Film Active and Passive Elements,” Proc. IEEE., vol. 51, pp. 851, 1964.
    [33] J. B. Kim, C. Fuentes-Hernandez, W. J. Potscavage, X. H. Zhang, and B. Kippelen, “Low-voltage InGaZnO thin-film transistors with Al2O3 gate insulator grown by atomic layer deposition,” Appl. Phys. Lett., vol. 94, no. 142107, 2009.
    [34] Y. J. Cho, J. H. Shin, S. M. Bobade, Y. B. Kim, and D. K. Choi, “Evaluation of Y2O3 gate insulators for a-IGZO thin film transistors,” Thin Solid Films, vol. 517, pp. 4115-4118, 2009.
    [35] J. B. Kim, C. Fuentes-Hernandez, and B. Kippelen, “High-performance InGaZnO thin-film transistors with high-k amorphous Ba0.5Sr0.5TiO3 gate insulator,” Appl. Phys. Lett., vol. 93, no. 242111, 2008.
    [36] H. Jeon, V. P. Verma, S. Hwang, S. Lee, C. Park, D. H. Kim, W. Choi, and M. Jeon, “Characteristics of Gallium-Doped Zinc Oxide Thin-Film Transistors Fabricated at Room Temperature Using Radio Frequency Magnetron Sputtering Method,” Jpn. J. Appl. Phys., vol. 47, No. 1, 87–90 2008.
    [37] Y. K. Moon, D. Y. Moon, S. Lee, S. H. Lee, and J. W. Park, and C. O. Jeong, “Effects of oxygen contents in the active channel layer on electrical characteristics of ZnO-based thin film transistors,” J. Vac. Sci. Technol. B., vol. 26, pp. 1472-1476, 2008.
    [38] C. Li, Y. Li, Y. Wu, B. S. Ong, and R. O. Loutfy, “ZnO field-effect transistors prepared by aqueous solution-growth ZnO crystal thin film,” J. Appl. Phys., vol. 102, no. 076101, 2007.
    [39] C. S. Yang, L. L. Smith, C. B. Arthur, and G. N. Parsons, “Stability of low-temperature amorphous silicon thin film transistors formed on glass and transparent plastic substrates,” Journal of Vacuum Science & Technology B, vol. 18, pp. 683–689, 2000.
    [40] R. Navamathavan, J. H. Lim, D. K. Hwang, B. H. Kim, J. Y. Oh, J. H. Yang, H. S. Kim and S. J. Park, “Thin-Film Transistors Based on ZnO Fabricated by Using Radio-Frequency Magnetron Sputtering,” Journal of the Korean Physical Society, Vol. 48, pp. 271-274, 2006.
    [41] E. Fortunato, A. Pimentel, L. Pereira, A. Gonc_alves, G. Lavareda, H. Aguas, I. Ferreira, C.N. Carvalho, R. Martins, “High field-effect mobility zinc oxide thin film transistors produced at room temperature,” Journal of Non-Crystalline Solids, vol. 338–340, pp. 806–809, 2004.
    [42] S. J. Chang, T. K. Ko, Y. K. Su, Y. Z. Chiou, C. S. Chang, S. C. Shei, J. K. Sheu, W. C. Lai, Y. C. Lin, W. S. Chen, and C. F. Shen, “GaN-based sensors with ITO contacts,” IEEE Sensors J., vol. 6, pp. 406–411, Apr. 2006.
    [43] P. C. Chang, C. L. Yu, S. J. Chang, K. H. Lee, C. H. Liu, and S. L. Wu, ”High-detectivity nitride-based MSM photodetectors on InGaN-GaN multiquantum well with the unactivated Mg-doped GaN layer,” IEEE J. Quan. Electron., vol. 43, pp. 1060–1064, Nov. 2007.
    [44] M. Razeghi, “Short-wavelength solar-blind detectors-status, prospects, and markets,” Proc. IEEE, vol. 90, pp. 1006–1014, Jun. 2002.
    [45] S. J. Chang, K. H. Lee, P. C. Chang, Y. C. Wang, C. L. Yu, C. H. Kuo, and S. L. Wu, “GaN-based Schottky barrier photodetectors with a 12-pair MgxNy-GaN buffer layer,” IEEE J. Quan. Electron., vol. 44, pp. 916–921, Oct. 2008.
    [46] K. J. Saji, M. K. Jayaraj, K. Nomura, T. Kamiya, and H. Hosono, ”Optical and Carrier Transport Properties of Cosputtered Zn–In–Sn–O Films and Their Applications to TFTs,” J. Electrochem. Soc., vol. 155, pp. H390, 2008.
    [47] M. S. Grover, P. A. Hersh, H. Q. Chiang, E. S. Kettenring, J. F. Wager, and D. A. Keszler, ”Thin-film transistors with transparent amorphous zinc indium tin oxide channel layer,” J. Phys. D: Appl. Phys. vol. 40, pp. 1335, 2007.
    [48] M. K. Ryu, S. Yang, S. H. K. Park, C. S. Hwang, and J. K. Jeong, ”Impact of Sn/Zn ratio on the gate bias and temperature-induced instability of Zn-In-Sn-O thin film transistors,” Appl. Phys. Lett., vol. 95, pp. 173508 (3 pages), 2009.
    [49] K. J. Chen, F. Y. Hung, S. J. Chang, S. P. Chang, Y. C. Mai, and Z. S. Hu, ”A study on crystallization, optical and electrical properties of the advanced ZITO thin films using co-sputtering system,” J. Alloy. Compd., vol. 509, pp. 3667–3671, 2011.
    [50] K. J. Saji, and M. K. Jayaraj, ”Effect of oxygen partial pressure on optical and electrical properties of co-sputtered amorphous zinc indium tin oxide thin films,” Phys. Stat. Sol. (a), vol. 205, No. 7, pp. 1625–1630, 2008.
    [51] M. C. Hamilton and J. Kanicki, “Organic polymer thin-film transistor photosensors,” IEEE J. Sel. Top. Quan. Electron., Vol. 10, pp. 840-848, 2004.
    [52] M. C. Hamilton. S. Martin and J. Kanicki, “Thin-film organic polymer phototransistors,” IEEE Tran. Electron. Dev., vol. 51, pp. 877-885, 2004.
    chap2
    [1] H. Hosono, ”Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application,” J. Non-Cryst. Solids, vol. 352, pp. 851–858, 2006.
    [2] H. Hosono, N. Kikuchi, N. Ueda, and H. Kawazoe, ”Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples,” J. Non-Cryst. Solids, vol. 200, pp. 165–169, 1996.
    [3] M. Orita, H. Ohta, M. Hirano, S. Narushima, and H. Hosono, “Amorphous transparent conductive oxide InGaO3(ZnO)m (m≤ 4): a Zn4s conductor,” Phil. Mag. B., vol. 81, pp. 501–515, 2001.
    [4] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Thin-film transistor and thin-film diode having amorphous-oxide semiconductor layer,“ Nature, vol. 432, pp. 488-492, 2004.
    [5] K. J. Saji, M. K. Jayaraj, K. Nomura, T. Kamiya, and H. Hosono, “Optical and Carrier Transport Properties of Cosputtered Zn–In–Sn–O Films and Their Applications to TFTs,” J. Electrochem. Soc., vol. 155, no. 6, pp. H390-H395, 2008.
    [6] B.D. Cullity, Elements of X-ray diffraction, 2nd ed, Addison Wesley, Canada, (1978).
    [7] J. L. Vossen and W. Kern, Thin Flim Processes, Academic Press, New York, pp. 131 (1978).
    [8] C. Y. Chang and S.M. Sze, “ULSI Technology”, McGraw-Hill, New York, pp. 380 (1996).
    [9] S. I. Shah, Handbook of Thin Film Process Technology, Institute of Physics Pub, Bristol, UK, pp. A3.0:1 (1995). 
    chap3
    [1] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, ”Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor,” Science, vol. 300, pp. 1269, 2003.
    [2] N. C. Su, S. J. Wang, and A. Chin, ”High-Performance InGaZnO Thin-Film Transistors Using HfLaO Gate Dielectric,” IEEE Elec. Dev. Lett., vol. 30, No. 12, 2009.
    [3] W. C. Shin, H. Moon, S. Yoo, Y. X. Li, and B. J. Cho, ”Low-Voltage High-Performance Pentacene Thin-Film Transistors With Ultrathin PVP/High-kappa HfLaO Hybrid Gate Dielectric,” IEEE Elec. Dev. Lett., vol. 30, pp. 1308-1310, 2010.
    [4] D. A. Mourey, D. A. Zhao, and T. N. Jackson, ”Self-Aligned-Gate ZnO TFT Circuits,” IEEE Elec. Dev. Lett., vol. 31, pp. 326-328, 2010.
    [5] H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, ”Amorphous oxide channel TFTs,” Thin Solid Films, vol. 516 pp. 1516–1522, 2008.
    [6] K. B. Park, J. B. Seon, G. H. Kim, M. Yang, B. Koo, H. J. Kim, M. K. Ryu, and S. Y. Lee, ”High Electrical Performance of Wet-Processed Indium Zinc Oxide Thin-Film Transistors,” IEEE Elec. Dev. Lett., vol. 31, pp. 311-313, 2010.
    [7] M. S. Grover, P. A. Hersh, H. Q. Chiang, E. S. Kettenring, J. F. Wager, and D. A. Keszler, ”Thin-film transistors with transparent amorphous zinc indium tin oxide channel layer,” Appl. Phys Lett., vol. 40, 2007.
    [8] Cheong, W. S.; Bak, J. Y.; and Kim, H. S. Transparent Flexible Zinc–Indium–Tin Oxide Thin-Film Transistors Fabricated on Polyarylate Films.Jpn. J. Appl. Phys. 2010, 05EB10-05EB10-4.
    chap4
    [1] Kumar,N.; Dorfman,A.; and Hahm,J. Fabrication of optically enhanced ZnO nanorods and micro rods using novel biocatalysts. J Nanosci Nanotechnol. 2005, 11,1915-8.
    [2] Johnson, M.A.L.; Fujita, S.; Rowland, W.H.; Hughes, W.C.; Cook, J.W. and Schetzina, J.F. J. Electron. Mater. 1996, 855.
    [3] Vispute,R.D.;Talyansky,V.;Choopun,S.; Sharma,R.P.;Venkatesan,T.; He,M.; Tang,X.; Halpern,J.B.; Spencer,M.G.; Li,Y.X.; Salamanca-Riba,L.G.; Iliadis,A.A. and Jones,K.A. Heteroepitaxy of ZnO on GaN and its implications for fabrication of hybrid optoelectronic devices. Appl. Phys. Lett. 1998, 348.
    [4] Ko, H.J.; Chen, Y.F.; Yao, T.; Miyajima, K.; Yamamoto, A. and Goto,T. Biexciton emission from high-quality ZnO films grown on epitaxial GaN by plasma-assisted molecular-beam epitaxy. Appl. Phys. Lett. 2000,537.
    [5] Fortunato, E.; Barquinha,P.; Pimentel,A.; Gonc¸alves,A.; Marques,A.; Pereira,L. and Martins, R. Recent advances in ZnO transparent thin film transistors.Thin Solid Films 2005, 205.
    [6] Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M. and Hosono,H. Amorphous oxide semiconductors for high-performance flexible thin-film transistors.Nature (London) 2004,488.
    [7] Dehuff, N.L.; Kettenring, E.S.; Hong, D.; Chiang, H.Q.; Wager, J.F.; Hoffman, R.L.; Park, C.-H. and Keszler, D.A. Role of order and disorder on electronic performance of oxide thin film transistors. J. Appl. Phys 2005, 97.
    [8] Chiang, H.Q.; Wager, J.F.; Hoffman, R.L.; Jeong, J. and Keszler, D.A. High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer.Appl. Phys. Lett 2005,86.
    [9] Kim M.; Jeong, J.H.; Lee, H.J.; Ahn, T.K.; Shin, H.S.; Park, J.-S.; Jeong, J.K.; Mo, Y.-G.; and Kim, H.D. High mobility bottom gate InGaZnO thin film transistors with SiOx etch stopper. Appl. Phys. Lett 2007,90.
    [10] David, C.P.; Burag, Y.; Zach, B.; Sunghwan, L. Amorphous IZO-based transparent thin film transistors. Thin Solid Films, 2008, 5894–5898.
    [11] Dehuff, N. L.; Kettenring, E. S.; Hong, D.; Chiang, H. Q.; Wager, J. F.; Hoffman, R. L.; Park, C.H.; Keszler, D. A. Transparent thin-film transistors with zinc indium oxide channel layer. JOURNAL OF APPLIED PHYSICS 2005, 97, 064505
    [12] Won, J.P.; Hyun, S.S.; Byung, D.A.; Gun, H.K.; Seung, M.L.; Kyung, H.K.; Hyun, J.K; Investigation on doping dependency of solution-processed Ga-doped ZnO thin film transistor Appl. Phys. Lett. 2008 93, 083508
    [13] HAN,D.S.; MOON,Y.K.; LEE,S.; KIM,K.T.; MOON,D.Y.; LEE,S.H.; KIM,W.S.; and PARKJ.W. Phosphorus Doping Effect in a Zinc Oxide Channel Layer to Improve the Performance of Oxide Thin-Film Transistors. Journal of ELECTRONIC MATERIALS, 2012, 2380 – 2386.
    [14] Lai, L. W.; Yan, J. T.; Chen, C. H.; Lou, L. R. and Lee, C.T. Nitrogen function of aluminum-nitride codoped ZnO films deposited using cosputter system. J. Mater. Res. 2009,2252-2258.
    [15] Look, D. C.; Hemsky, J. W.; and Sizelove, Residual Native Shallow Donor in ZnO. J. R. Phys. Rev. Lett. 1999,12,2552-2555.
    [16] Liu, L.C.; Chen, J.S.; Jeng, J.S.; and Chen, W.Y. Variation of Oxygen Deficiency in Solution-Processed Ultra-Thin Zinc-Tin Oxide Films to Their Transistor Characteristics. ECS Journal of Solid State Science and Technology, 2013, 4, Q59-Q64.
    chap5
    [1] J.-H. Shin, J.-S. Lee, C.-S. Hwang, S.-H. K. Park, W.-S. Cheong, M. Ryu, C.-W. Byun, J.-I. Lee, and H. Y. Chu, ETRI J. 31, 62 (2009).
    [2] T.-C. Fung, C-.S. Chuang, K. Nomura, H.-P. D. Shieh, H. Hosono, and J. Kanicki, J. Information Display 9, 21 (2008).
    [3] K. Takechi, M. Nakata, T. Eguchi, H. Yamaguchi, and S. Kaneko, Jpn. J. Appl. Phys. 48, 010203 (2009).
    [4] K. Nomura, T. Kamiya, M. Hirano, and H. Hosono, Appl. Phys. Lett. 95, 013502 (2009).
    [5] M. E. Lopes, H. L. Gomes, M. C. R. Medeiros, P. Barquinha, L. Pereira, E. Fortunato, R. Martins, and I. Ferreira, Appl. Phys. Lett. 95, 063502 (2009).
    [6] P. Görrn, M. Lehnhardt, T. Riedl, and W. Kowalsky, Appl. Phys. Lett. 91, 193504 (2007).
    [7] J.-M. Lee, I.-T. Cho, J.-H. Lee, W.-S. Cheong, C.-S. Hwang, and H.-I. Kwon, Appl. Phys. Lett. 94, 222112 (2009).
    [8] A. Suresh and J. F. Muth, Appl. Phys. Lett. 92, 033502 (2008).
    [9] K. J. Saji, M. K. Jayaraj, K. Nomura, T. Kamiya, and H. Hosono, ”Optical and Carrier Transport Properties of Cosputtered Zn–In–Sn–O Films and Their Applications to TFTs,” J. Electrochem. Soc., vol. 155, pp. H390, 2008.
    [10] M. S. Grover, P. A. Hersh, H. Q. Chiang, E. S. Kettenring, J. F. Wager, and D. A. Keszler, ”Thin-film transistors with transparent amorphous zinc indium tin oxide channel layer,” J. Phys. D: Appl. Phys. vol. 40, pp. 1335, 2007.
    [11] M. K. Ryu, S. Yang, S. H. K. Park, C. S. Hwang, and J. K. Jeong, ”Impact of Sn/Zn ratio on the gate bias and temperature-induced instability of Zn-In-Sn-O thin film transistors,” Appl. Phys. Lett., vol. 95, pp. 173508 (3 pages), 2009.
    [12] K. J. Chen, F. Y. Hung, S. J. Chang, S. P. Chang, Y. C. Mai, and Z. S. Hu, ”A study on crystallization, optical and electrical properties of the advanced ZITO thin films using co-sputtering system,” J. Alloy. Compd., vol. 509, pp. 3667–3671, 2011.
    [13] K. J. Saji, and M. K. Jayaraj, ”Effect of oxygen partial pressure on optical and electrical properties of co-sputtered amorphous zinc indium tin oxide thin films,” Phys. Stat. Sol. (a), vol. 205, No. 7, pp. 1625–1630, 2008.
    [14] M. C. Hamilton and J. Kanicki, “Organic polymer thin-film transistor photosensors,” IEEE J. Sel. Top. Quan. Electron., Vol. 10, pp. 840-848, 2004.
    [15] M. C. Hamilton. S. Martin and J. Kanicki, “Thin-film organic polymer phototransistors,” IEEE Tran. Electron. Dev., vol. 51, pp. 877-885, 2004.

    下載圖示 校內:2023-01-01公開
    校外:2023-01-01公開
    QR CODE