簡易檢索 / 詳目顯示

研究生: 余秉宥
Yu, Ping-Yu
論文名稱: 添加奈米改質粘土之水泥砂漿鬆弛行為
指導教授: 黃忠信
Huang, Jong-Shin
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 85
中文關鍵詞: 奈米改質粘土鬆弛試驗
相關次數: 點閱:74下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

      奈米改質粘土於高分子複合材料中,由於受聚合作用而剝離或插層,並均勻分散於高分子材料中,致使高分子複材之工程性質大幅改善。高分子/粘土複材中常使用之粘土為蒙脫土,蒙脫土具有易吸水膨脹之性質,故混凝土工程甚少使用此類粘土,然而改質後粘土層間則呈厭水狀態,且形成具有填塞毛細孔大小之尺寸。本研究藉由添加奈米改質粘土,並與未加入奈米改質粘土之水泥砂漿相互比較,分別進行抗壓試驗、彈性模數量測與鬆弛試驗等,主要係探求添加奈米改質粘土對混凝土材料微結構與其工程性質之影響。

      實驗結果發現,僅取代部分水泥約0.25~0.75%之少量奈米改質粘土,對提升水泥漿體工程性質即具有良好之成效。鬆弛試驗結果顯示,添加奈米改質粘土對活性能與彈性模數之變化趨勢極為相似,尤其添加約0.5%之奈米改質粘土,即能有效提升水泥砂漿之活性能,亦即添加少量奈米改質粘土,對於水泥砂漿之微結構緻密性及相關工程性質具有正面且有效之助益。

    none

    目錄 摘要..........................................................................I 致謝..........................................................................II 目錄..........................................................................V 表目錄........................................................................VIII 圖目錄........................................................................X 第一章 緒論................................................................1 1.1 前言...................................................................1 1.2 本文內容與組織.........................................................2 第二章 相關理論與文獻回顧..................................................7 2.1 水泥微觀結構...........................................................7 2.1.1 由矽酸鈣水化物所形成之層狀組織.....................................7 2.1.2 水泥微結構內之孔隙.................................................8 2.1.3 模擬水泥微結構之理論模式...........................................9 2.2 奈米改質粘土之背景與應用...............................................10 2.2.1 原始粘土之結構特性.................................................10 2.2.2 高分子/奈米黏土之理論..............................................12 2.2.3 奈米改質粘土於混凝土工程之應用.....................................13 2.3 水泥砂漿之彈性模數.....................................................15 2.3.1 彈性模數之型式.....................................................15 2.3.2 彈性模數與孔隙之關係...............................................15 2.4 擴散機制...............................................................16 2.5 應力鬆弛現象...........................................................17 2.5.1 應力鬆弛速率.......................................................18 2.5.2 水泥砂漿之乾縮與鬆弛...............................................19 第三章 彈性模數之測定......................................................32 3.1 添加奈米改質黏土之水泥砂漿製造.........................................32 3.1.1 試體製作...........................................................32 3.1.2 養護與試體表面處理.................................................34 3.2 單軸抗壓強度之測定.....................................................34 3.2.1 試驗規劃...........................................................34 3.2.2 試驗步驟...........................................................35 3.3 機器夾具之勁度.........................................................35 3.3.1 未考慮夾具變形量...................................................35 3.3.2 考慮夾具變形量.....................................................36 3.4 彈性模數之測定.........................................................37 3.4.1 試驗規劃...........................................................37 3.4.2 試驗步驟...........................................................37 3.5 結果與討論.............................................................38 第四章 壓力鬆弛試驗........................................................56 4.1 鬆弛試驗...............................................................56 4.1.1 鬆弛試驗之水泥漿體製備與養護.......................................56 4.1.2 試驗規劃...........................................................57 4.1.3 試驗步驟...........................................................58 4.2 結果與討論.............................................................59 第五章 結論................................................................81 參 考 文 獻.................................................................83

    參考文獻

    [1] Y.Fukushima and S.Inagaki, "Synthesis of an Intercalated Compound
    of Montomorillionite and 6-polyamide", Journal of Inclusion
    Phenomenology, Vol.5 , pp.473-482 , 1987.

    [2] 蔡宗燕, 粘土奈米層狀材料之開發與應用,成功大學資源工程研究
    所專題演講內容, 2000.

    [3] R.F.Feldman, "The Flow of helium into the interlayer spaces of
    hydrated Portland cement paste ",Cement and Concrete Research , Vol.1 ,
    pp.285-300 , 1971.

    [4] R.F.Feldman, "Helium flow and density measurement of the hydrate
    tricalcium silicate-water system", Cement and Concrete Research,
    Vol.2 , pp.123-136 , 1972.

    [5] Z.P.Bazant, "Material models for structural creep analysis",ch.2 Edited
    in Mathematical modeling of creep and shrinkage of concrete.
    Edited by Z.P.Bazant.Wiley & Sons , New York , 1998.

    [6] E.E.Lachowski, "Trimenthylsilylation as a tool for the study of cement
    pastes.II.Quantitative analysis of the silicate fraction of hardened
    cement paste", Cement and Concrete Research,Vol.9, pp.343-352, 1979.

    [7] L.J.Parrott and M.G.Taylor,"A development of the molydate complexing
    method for the analysis of silicate mixture", Cement and Concrete
    Research, Vol.10 , pp.643-648 , 1980.

    [8] T.C. Powers, "Capillary continuity or discontinuity in cement pastes",
    PCA Bulletin, No.10, pp.2-12, 1959.
    [9] F.H.Wittmwnn, "Interaction of hardened cement paste and water ",
    Journal of The American Ceramic Society, Vol.56, No.8, pp.409-415,
    1973.
    [10] B.B.Hope and N.H.Brown, "A model for the creep of concrete",
    Cement and Concrete Research, Vol.5, pp.577-586, 1975.

    [11] L.J.Parrott, "Effect of a heat cycle drying moist curing upon the
    deformation of hardened cement paste ,in hydraulic cement pastes",
    Cement and Concrete Assoc. Slough, UK, pp.189-203, 1976.

    [12] R.L.Day,and B.R.Gamble, "The effect of thermal pretreatment on the
    creep of hardened cement paste", Cement and Concrete Research,
    Vol.13, pp.638-648, 1983.

    [13] 施國欽, "大地工程學(一) 土壤力學篇",文笙書局, pp.3-1, 1996.

    [14] D.L. Sparks, "環境土壤化學", 五南圖書出版公司, pp.131, 2000.

    [15] 廖建勛, "耐米高分子複合材料", 工業材料125期, pp.108, 民國八十
    六年五月.

    [16] A.Micheal and D.Phillippe, "Polymer-layered silicate nanocomposites :
    preparation , properties and uses of a new class of materials ",
    Materials Science and Engineering, Vol.28, pp.1-63, 2000.

    [17] 黃兆龍, "混凝土性質與行為",詹氏書局, pp.239, 2002.

    [18] F.H.Wittmann, "The structure of hardened cement paste-a basis for a
    better understanding of the material properties, in Hydraulic Cement
    Paste:Their Structure and Properties ", Cement and Concrete Assoc.
    Slough, UK, pp.96-117, 1976.

    [19] R.L.Day,and B.R.Gamble, "The effect of change in structure on the
    activation energy for the creep of concrete", Cement and Concrete
    Research, Vol.13, pp.529-540, 1983.

    [20] W.P.S.Dias,G.A.Khoury,and P.J.E.Sullivan, "An activation energy
    approach for the temperature dependence of basic creep of hardened
    cement paste ",Magazine of Concrete Research, Vol.39, No.140,
    pp.141-148, 1987.

    [21] R.W.Rohde and J.C.Swearenden,"Stress Relaxation Testing-Metal
    Deformation Modeling-Stress Relaxation of Aluminum ",ASTM special
    technical publication 676 Alfred Fox, Bell Telephone Laboratories,
    pp.34-35, 1979.

    [22] S.Mindess and J.F.Young,"Concrete ",Prentice-Hall, Inc.,Englewood
    Cliffs, N.J.07632, 1981.

    [23] J.Kubat,L.- .Nillsson,and M.Rigdhl,"Internal stresses and two-step
    stress relaxation of polyethylene", Materials Science and Engineering,
    61, pp.267-274, 1983.

    [24] M.F.Ashby and D.R.H.Jones,"Engineering Materials ", pergamon ,
    1980.

    [25] E.Baker, "Stress Relation in Tin-Lead Solders",Materials Science and
    Engineering, 38, pp.241-247, 1979.

    [26] Instron Corporation, "3119-005 Temperature Chambers",Instron 3119
    Series Temperature Controlled Chamber, M20-03119-55,
    pp.2-3~2-4, 1992.

    下載圖示 校內:立即公開
    校外:2004-07-19公開
    QR CODE