簡易檢索 / 詳目顯示

研究生: 張慧慈
Zhang, Hui-Chi
論文名稱: 硬球波茲曼方程的解空間行為
Spatial behavior of the solution to the Boltzmann equation with hard sphere
指導教授: 吳恭儉
Wu, Kung-Chien
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 21
中文關鍵詞: 硬球波茲曼方程穩態空間行為
外文關鍵詞: Hard sphere, Boltzmann equation, Equilibrium, Spatial behavior
相關次數: 點閱:162下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中,我們主要的目的是要研究硬球波茲
    曼方程在靠近穩態附近的解的空間行為,更確切地 說,我們的波茲曼方程的解空間行為是在初值條件是 多項式是遞減和初值沒有 Sobolev regularity 的條件 下得到的。

    The main goal of this thesis is to understand the quantitative spatial behavior of the solution to the Boltzmann equation for hard sphere in the closed to equilibrium setting. More precisely, we get the quantitative spatial behavior of the solution to the Boltzmann equation under polynomial spatial decay assumption, but without any Sobolev regularity
    assumption on the initial condition.

    1. Introduction......2 2. Preliminaries 4 3. Weighted linearized Boltzmann equation with a source term.......7 4. Proof of Theorem 1......17 5. References........20

    [1] I.-K. Chen, Regularity of stationary solutions to the linearized Boltzmann equations, SIAM J. Math. Anal., 50 (2018), No. 1, 138-161.
    [2] F. Golse and F. Poupaud, Stationary solutions of the linearized Boltzmann equation in a half-space, Math. Methods Appl. Sci. 11 (1989), 483-502.
    [3] R.-J. Duan, S. Ukai, T. Yang and H.-J. Zhao, Optimal decay estimates on the linearized Boltzmann equation with time dependent force and their applications, Comm. Math. Phys., 277 (2008), 189-236.
    [4] R. Ellis and M. Pinsky, The first and second fluid approximations to the linearized Boltzmann equation, J. Math. Pure. App., 54 (1975), 125–156.
    [5] Y. Guo, The Boltzmann equation in the whole space, Indiana Univ. Math. J., 53 (2004), 1081-1094.
    [6] H. Grad, Asymptotic theory of the Boltzmann equation, Rarefied Gas Dynamics, J. A. Laurmann, Ed. 1, 26,
    pp.26–59 Academic Press, New York, 1963.
    [7] Y.-C. Lin, H.T. Wang and K.-C. Wu, Quantitative Pointwise Estimate of the Solution of the Linearized
    Boltzmann Equation, J. Stat. Phys., 171 (2018), 927-964.
    [8] T.-P. Liu, S.-H. Yu, Boltzmann equation: micro-macro decompositions and positivity of shock profiles, Comm.
    Math. Phys., 246 (2004), 133-179.
    [9] T.-P. Liu and S.-H. Yu, The Green function and large time behavier of solutions for the one-dimensional Boltzmann equation, Commun. Pure App. Math., 57 (2004), 1543–1608.
    [10] T.-P. Liu, T. Yang, S.-H. Yu, Energy method for the Boltzmann equation, Phys. D, 188 (2004), 178-192.
    [11] S. Ukai, On the existence of global solutions of mixed problem for non-linear Boltzmann equation, Proc. Japan
    Acad., 50 (1974), 179-184.

    下載圖示 校內:2023-01-01公開
    校外:2023-01-01公開
    QR CODE