| 研究生: |
林泰錄 Lin, Tai-Lu |
|---|---|
| 論文名稱: |
以粒子網格法模擬電容耦合電漿在二維渠溝幾何下之現象 Particle-In-Cell Simulation of Two Dimensional Trench Geometry in Capacitively Coupled Plasma |
| 指導教授: |
西村泰太郎
Yasutaro Nishimura |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 太空與電漿科學研究所 Institute of Space and Plasma Sciences |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 54 |
| 中文關鍵詞: | 粒子網格法 、電容耦合電漿 、電漿蝕刻 、渠溝 、非等向性 |
| 外文關鍵詞: | Particle-in-Cell, Capacitively Coupled Plasma, Plasma etching, Trench, Anisotropy |
| 相關次數: | 點閱:151 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在半導體製程下,電漿蝕刻的探討是一個很普遍的課題,然而在大部分的研究裡,很少看到以模擬的方式去探討電漿蝕刻在二維渠溝下的行為。因此,本研究以粒子網格法(PIC)建構一維以及二維空間電漿行為之模型。首先先以一維模型模擬電容耦合電漿在兩電極板間之行為,觀察電漿鞘層的形成,並且探討由電子撞擊兩極板產生的二次電子所造成的影響。更進一步拓展PIC模型至二維電漿蝕刻渠溝下之行為,藉由改變渠溝的寬度,探討乾式蝕刻的非等向性。為了使情況更加貼近真實,在模擬中我們加入射頻偏壓來符合實際情況。此外,在電漿蝕刻時,渠溝底部有可能會因為離子不斷轟擊而帶正電,因此,我們也在渠溝底部加入了正電位的邊界條件來探討其對電漿蝕刻非等向性的影響。
For an efficient etching by plasma, in generating trench geometries, anisotropy is an important factor. For the ions to perpendicularly bombard the semiconductor surface, stationary plasma sheaths need to be formed to accelerate the ions. However, not many journal publications have reported on the stability of a plasma in a multi-dimensional trench geometry. A Particle-in-Cell model is built solely from the beginning in Fortran 95 to investigate basic plasma interaction between two electrode plates including ions and electrons. A secondary electron emission (SEE) effect in one-dimensional PIC model is incorporated. Then, our PIC model is extend to a two-dimensional trench geometry. The plasma behavior in the vicinity of the trench geometry is investigated by varying its size. In this study, radio frequency (RF) electric potential is employed in the system as in capacitively coupled plasma (CCP) process widely used in the plasma etching process. Furthermore, the influence of charging up by ions’ bombardment, which results in a positive potential on the trench bottom, is also examined.
1. Abramowitz, M., and Stegun, I. A., Handbook of Mathematical Functions, New York, Dover, p.933 (1970).
2. Amelio, G. F., “Theory for the Energy Distribution of Secondary Electrons”, Journal of Vacuum Science and Technology, Vol. 7, No.6, p.593-604 (1970).
3. Birdsall, C. K., and Langdon, A. B., Plasma Physics via Computer Simulation, Bristol, IOP Publishing, p.11 (1986).
4. Chen, Y. C., “Particle-in-Cell Simulation of Capacitively Coupled Plasma in The Presence of Coulomb Collisions and Secondary Electron Emission”, Master’s thesis, National Cheng Kung University (2015).
5. Campanell, M. D., and Khrabrov, A. V., and Kaganovich, I. D., “Absence of Debye Sheaths due to Secondary Electron Emission”, Phys. Rev. Lett., Vol. 108, No. 25, p.255001-1255001-5 (2012a).
6. Campanell, M. D., and Khrabrov, A. V., and Kaganovich, I. D., “General Cause of Sheath Instability Identified for Low Collisionality Plasmas in Devices with Secondary Electron Emission”, Phys. Rev. Lett., Vol. 108, No. 23, p.235001-1-235001-5 (2012b).
7. Chen, F. F., Introduction to plasma physics and controlled fusion, 2nd ed., New York, Plenum, p.290 (1984).
8. Dawson, J. M., “One-dimensional plasma model”, Phys. Fluids, Vol. 5, No. 4, p.445-449 (1962).
9. Dai, Z. L., and Yue, G., and Wang, Y. N., “Simulations of Ion Behaviors in a Photoresist Trench During Plasma Etching Driven by a Radio-Frequency Source”, Plasma Science and Technology, Vol.14, No.3, p.240-244 (2012).
10. Hager, W. W., “Applied Numerical Linear Algebra”, Upper Saddle River, Prentice Hall, p.346 (1987).
11. Hitchon, W. N. G., Plasma Processes for Semiconductor Fabrication, New York, Cambridge University Press, p.121-141 (1999).
12. Huang, C. W., and Chen, Y. C., and Nishimura, Y., “Particle-in-Cell Simulation of Plasma Sheath Dynamics With Kinetic Ions”, IEEE Transactions on Plasma Science, Vol. 43, No. 2, p.675-682 (2015).
13. Huang, C. W., “Particle-In-Cell Simulation of Asymmertic Secondary Electron Emission in Plasma Processing”, Master’s thesis, National Cheng Kung University (2014).
14. Konuma, M., Film deposition by plasma techniques, Berlin, Springer-Verlag, p.117 (1991).
15. Lieberman, M. A., and Lichtenberg, A. J., Principles of Plasma Discharges and Materials Processing, 2nd ed., Hoboken, John Wiley and Sons, p.1-22, p.165-206, p571 (2005).
16. Lee, J. K., and Babaeva, N. Y., and Kim, H. C., and Manuilenko, O. V., and Shon, J. W., "Simulation of Capacitively Coupled Single- and Dual-Frequency RF Discharges", IEEE Transactions on Plasma Science, Vol. 32, No. 1, p. 47-53 (2004).
17. Nicholson, D. R., Introduction to Plasma Theory, Melbourne, Krieger, p.1-7 (1992).
18. Ruth, R. D., “A canonical integration technique”, IEEE Transactions on Nuclear Science, Vol. 30, No. 4, p.2669-2671 (1983).
19. Surendra, M., and Graves, D. B., “Particle simulations of radio-frequency glow discharges”, IEEE Transactions on Plasma Science, Vol. 19, No. 2, p. 144-157 (1991).
20. Strikwerda, J. C., Finite Difference Schemes and Partial Differential Equations, Belmont, Wadsworth & Brooks, p.32 (1989).
21. Sansonettia, J. E., and Martin, W. C., Handbook of Basic Atomic Spectroscopic Data, Gaithersburg, National Institute of Standards and Technology, p.2001 (2005).
22. Smith, M. R., and Hung, C. T., and Lin, K. M., and Wu, J. S., and Yu, J. P., “Development of a semi-implicit fluid modeling code using finite-volume method based on Cartesian grids”, Computer Physics Communications, Vol. 182, No. 1, p.170-172 (2011).
23. Xu, L., and Chen, L., and Funk, M., and Ranjan, A., and Hummel, M., and Bravenec1, R., and Sundararajan, R., and Economou, D. J., and Donnelly, V. M., “Diagnostics of ballistic electrons in a dc/rf hybrid capacitively coupled discharge”, Applied Physics Letter, Vol. 93, No. 26, p.261502-1-261502-3 (2008).
校內:立即公開