簡易檢索 / 詳目顯示

研究生: 葉昱均
Yeh, Yu-Chun
論文名稱: 以調制光譜及拉曼光譜研究低溫成長砷化鎵之光電特性
Studies of Electro-optic Properties of Low Temperature Grown GaAs by Photoreflectance and Raman Spectroscopy
指導教授: 黃正雄
Hwang, Jenn-Shyong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 61
中文關鍵詞: 拉曼光譜低溫成長砷化鎵譜制光譜
外文關鍵詞: Raman spectroscopy, photoreflectance
相關次數: 點閱:60下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   利用分子束磊晶(molecular beam epitaxy)在低溫的基版上成長砷化鎵磊晶薄膜稱為低溫成長砷化鎵(Low- temperature- grown GaAs, LT-GaAs)。低溫成長的砷化鎵因受應力影響會產生過量的缺陷,經退火處理後可降低缺陷的密度、改變缺陷的分佈,但許多光電特性與高溫成長的GaAs不同,例如106 Ω-cm的高電阻值,超短光激發載子生命期(carrier lifetime)約為幾百飛秒(femtosecond),這些特性可以增加在光導方面的應用。在本論文中,第一部份我們利用光調制光譜探討不同低溫成長的砷化鎵的光電特性。利用實驗數據和理論公式之最小平方擬合所得的參數,討論在不同成長溫度的樣品,其表面態密度、表面勢壘、能隙等變化,我們發現其缺陷密度及表面態密度隨成長溫度的降低而增加。第二部份我們量測低溫成長砷化鎵之拉曼光譜及雙晶X-光繞射光譜,藉由譜線的不同討論其成長溫度對於晶格振動模式及晶體結構的影響,我們發現其晶體結構隨成長溫度的降低而趨於多晶格結構。同時比較兩系列不同來源的樣品的拉曼及X-ray光譜,發現成長LT-GaAs時III-V族元素的流量對所成長樣品的品質有極大的影響。

      Crystalline film of GaAs grown by molecular beam epitaxy on low temperature substrate is called low temperature grown GaAs(LT-GaAs). Excess defects exist in the LT–GaAs layer due to strain effect. After annealing, LT-GaAs has unique electro-optic property, such as resistivity of mega order, ultrashort carrier lifetime (about hundreds of femtosecond). LT-GaAs is commonly used in photoconductive application. In the first part of this study, we discuss the electro-optic property of LT-GaAs layer grown at various temperatures using modulation spectroscopy of photoreflectance(PR). We measured the intensity of photoreflectance as function of pump beam power. By least squares fitting the experimental results to the theoretical relation, the density of surface state, surface barrier height, and band gap of LT-GaAs grown at various temperatures can be obtained from the fitting parameters. It is found that the density of defects and surface states increase as the growth temperature decreases. In the second part of this study, we investigate the vibrational mode and crystal structures of the LT-GaAs samples from Raman spectra and double crystal X-ray diffraction. Results from Raman spectra and X-ray diffraction spectra are consistent, which indicate that the quality of the LT-GaAs is degraded as the growth temperature decreases and the film structure becomes more and more polycrystalline .

    第一章 緒論..............................................1 1-1 低溫成長砷化鎵特性介紹............................1 1-2 研究動機.........................................6 第二章 調制光譜學.......................................9 2-1 光調制光譜簡介...................................9 2-2 光調制光譜的機制................................11 2-3 實驗裝置........................................14 2-3-1 光調制光譜......................................14 2-3-2 電調制光譜......................................18 第三章 拉曼光譜學......................................20 3-1 拉曼光譜之簡介..................................20 3-2 光散射之種類....................................21 3-3 拉曼散射的量子模型與實驗裝置....................24 第四章 調制光譜研究低溫成長砷化鎵......................27 4-1 樣品及成長條件..................................29 4-2 PR訊號對激發光強度之擬合........................33 4-3 結論............................................42 第五章 利用拉曼光譜及雙晶X光繞射光譜研究低溫成長砷化鎵.43 5-1 拉曼散射光譜之分析..............................44 5-2 結論…………………………………………………………53 第六章 總結與未來展望..................................54 6-1 總結............................................54 6-2 未來展望.........................................55 參考文獻.................................................56

    1. Frank W. Smith ,Mater. Res. Soc .Symp. Proc. 241, 3 (1992).
    2. J. S. Blakemore , J.Appl. Phys. 53, R123 (1982).
    3. W. K. Liu, D. I. Lubyshev, P. Specht, R.Zhao, E. R. Weber, J. Gebauer, A. J. Springthorpe, R. W. Streater, S. Vijarnwannaluk, W. Songprakob, and R. Zallen, J. Vac. Sci. Technol .B18, 1594 (2000).
    4. X. Liu, A. Prasad, J. Nishio, E. R. weber, Z. Liliental-Weber and W. Walukiewicz, Appl. Phys. Lett. 67(2), 10 July 1995.
    5. Donald A. Neamen, Semiconductor Physics and Devices, 3/E.New Nork: McGraw- Hill, 2002 p. 224.
    6. P. Grenier and J.F.Whitaker, Appl. Phys. Lett. 70, 1998 (1997).
    7. J. K. Luo, H. Thomas, D. V. Morgan, and D. Westwood, J. Appl. Phys. 79, 3622 (1996).
    8. H. Yamamoto, Z. Q. Fang, And D. C. Look , Appl. Phys. Lett. 57, 1537 (1990).
    9. S. Fleischer, C. D. Beling ,S. Fung, W. R. Nieveen, J.E. Squire, J. Q. Zheng, and M. Missous, J. Appl. Phys. 81 , 190 (1997).
    10 A. C. Warren, J. M. Woodall, J. L. Freeouf, D. Grischkowsky, andD. T. Mclnturff, Appl. Phys. Lett. 57 (13) 1990.
    11. S Gupta, J. F. Whitaker, and G. A. Mourou, IEEE J. Quantum Electron. 28, 24-64 (1992).
    12. H. S. Loka, S. D. Benjanmin, and P. W. E. Smith, IEEE J.Quantum Electron. 34, 1426(1998)
    13. K. A. McIntosh, K. B. Nichols, S. Verghese, And E. R. Brown Appl. Phys. Lett. 70, 354 (1997).
    14. F. W. Smith, A. R. Calawa, Chang-Lee Chen, M. J. Manfra, and L. J. Mahoney, IEEE Electron Device Lett. Vol. 9. NO. 2. (1998).
    15. Martin Mikulics, Xuemei Zheng, Roman Adam, Roman Sobolewski, and Peter Kordos, IEEE Photonics Tech. Lett, Vol. 15 ,NO. 4 (2003).
    16. M. Giehler, J. Herfort, W. Ulrici, L. Daweritz, and K. H. Ploog, J. Appl. Phys. 92, 2974 (2002).
    17. See, for example, K. Onabe, Y. Tashiro, and Y. Ide, Sur. Sci. 174, 401 (1986).
    18. S. Yamada, T. Fukui, and A. Sugimura, Sur. Sci. 174, 444 (1986)
    19. R. Dingle, W. Wiegman, and C. H. Henry, Phys. Rev. Lett. 33, 827 (1974)
    20. C. Weisbuch, R. C. Miller, R.Dingle, A.C. Gossard, and W. Wiegmann, Solid state commu. 37, 219 (1981)
    21. A. C. Wright and J. O. Williams, Mat. Letts. 3, 80 (1985);R. D. Dupuis, R. C. Miller and P. M. Petroff, Mat. Letts. 3, 398 (1985)
    22. H. Shen, P. Parayanthal, Y. F. Liu, and F. H. Pollak, Rev. Sci. Intrum. 58, 1429 (1987)
    23. F. Bassni and G. P. Parravicini, Electric State and Opitical Transition in Solid (America Press, 1975) and D. E. Aspnes, in Handbook on Semiconductors, ed. By T. S. Moss (North-Holland, New York, 1980) Vol. 2, p. 109.
    24. M. Cardona, in Modulation Spectroscopy, (Academic, New York, 1969) and Reference therein.
    25. J. S. Hwang, S. L. Tyan, W. Y. Chou, M. L. Lee, H. H. Lin, T. L. Lee, W. David, and Z. Hang, Appl. Phys. Lett., 64, 3314 (1994).
    26. T. T. Chiang and W. E. Spicer, J. Vac. Sci. Technol., A 7, 724 (1989).
    27. J. Tersoff, Phys. Rev. Lett., 52, 465 (1984).
    28. J. S. Hwang, W. Y. Chou, S. L. Tyan, H. H. Lin and T. L. Lee, Appl. Phys. Lett., 67, 2350 (1995).
    29. J. S. Hwang, W. Y. Chou. M. C. Hung, J. S. Wang and H. H. Lin, to be published in J. Appl. Phys.
    30. R. Bhattacharya, C. Y. Lee, F. H. Pollak and D. M. Schleich, J. Non-Crystalline Solids, 91, 235 (1987).
    31. O. J. Glembocki B. V. Shanabrook, N. Bottka, W. T. Beard and J. Comas, Appl. Phys. Lett., 46, 970 (1985).
    32. O. J. Glembocki, B. V. Shanabrook, N. Bottka, W. T. Beard and J. Comas, Proc. Photo-Optical Instrum. Eng., 524, 86 (1985).
    33. R. N. Bhattacharya, H. Shen, P. Parayanthal, F. H. Pollak, T. Coutts and Aharoni, Phys. Rev., B 37, 4044 (1988); also Pro. Soc. Photo-Optical Instrum. Engineers, (SPIE, Bellingham, 1987), 794, 81 (1987); Solar Cells, 21, 371 (1987)
    34. R. Glosser and N. Bottka, Proc. Soc. of Photo-Optical Instrum. Engineers, (SPIE, Bellingham, 1987), 794, 88 (1987).
    35. H. Shen, F. H. Pollak and J. W. Woodall, J. Vac. Sci. Tech., B 8, 413 (1990).
    36. P. S. Dutta, K. S. Sangunni, H. L. Bhat and Vikram Kumar, Appl. Phys. Lett. 66, 1986 (1995).
    37. H. Nakanishi and K. Wada, Jpn. J. Appl. Phys. 32, 6206 (1993).
    38. M. Sakai and M. Shinohara, J. Appl. Soc. Japn. Vol. 66, 738 (1997).
    39. M. Sydor, and A. Badakhshan and J. R. Engholm, Appl. Phys.Lett. 59, 677 (1991).
    40. E. E. Mendez, L. L. Chang, G. Landgren, R. Ludeke, L. Esaki and F. H. Pollak, Phys. Rev. Lett., 46, 1230 (1981).
    41. M. Erman, J. B. Theetan, P. Frijlink, S. Gaillard, F. J. Hia and C. Alibert, J. Appl. Phys., 56, 3214 (1984).
    42. C. Alibert, S. Gaillard, J. A. Brum, G. Bastard, P. Frijlink and M. Erman, Solid state Commum. 53, 457 (1985).
    43. K. Capuder, P. E. Norris, H. Shen, Z. Hang and F. H. Pollak, J. Electron. Mater. 19, 295 (1990).
    44. H. Shen, S. H. Pan, F. H. Pollak, M. Dutta and T. R. AuCoin, Phys. Rev. B36, 9384 (1987).
    45. S. L. Tyan, Y. C. Wang and J. S. Hwang, Appl. Phys. Lett. 68, 1 (1996).
    46. A. Ksendzov, F. H. Pollak, P. M. Amirtharaj and J. A. Wilson, J. Cryst. Growth, 586 (1988).
    47. H. Shen, Z. Hang, S. H. Pan, F. H. Pollak, and J. M. Woodall, Appl. Phys. Letts., 52, 2058 (1988).
    48. H. Shen, F. H. Pollak, and J. M. Woodall, J. Vac. Sci. Technol., B 7, 804 (1989).
    49. H. Shen, Z. Hang, S. H. Pan, F. H. Pollak, T. F. Kuech, J. M. Woodall, and R. N. Sacks, Prodeedings of the 9th International Conference on the Physics of Semiconductors, Warsaw, 1989, ed. by W. Zawadzki (institute of Physics, Polish Academy of Science, Warsaw, 1989) p.1087.
    50. D. E. Aspnes and A. A. Studna, Phys. Rev., B7, 4605 (1973).
    51. H. R. Philipp and H. Ehrenreich, Phys. Rev., 129, 1550 (1963).
    52. D. D. Sell and S. E. Stokowski, 1970, Proc. 10th Int. Conf. on the Physics of Semiconductors, Cambridge, Mass., eds. Keller et al. (USACE Div. Techn. Inform. CONF-70081, Springfield,) p. 417.
    53. Z. C. Feng, A. A. Allerman, P. A. Barnes and S. Perkowitz, Appl. Phys. Lett. 60, 1848 (1992)
    54. J. P. Estrera, P. D. Stevens, R. Glosser, W. M. Duncan, Y. C. Kao,Y. H.Liu and E. A. Beam, Appl. Phys. Lett. 61, 1927 (1992)
    55. G. Lucovsky, M. H. Brodsky, M. F. Chen, R. J. Chicotka and A. T. Ward, Phys. Rev. B4, 1945(1971)
    56. Koji Yano and Takashi Katoda, J. Appl. Phys. 70,7036(1991)
    57. D. P. Bour, J. R. Shealy, A. Ksendzov and Fred Pollak, J. Appl. Phys. 64, 6456(1988)
    58. F. H. Pollak and H. Shen, in Proceeding of the Society of Photooptical Instrumentation Engineers (SPIE, Bellingham, 1898), Vol. 1037, P 16.
    59. E. E. Mendez, L. L. Chang, G. Landgren, R. Ludeke, L. Esaki and F. H. Pollak, Phys. Rev. Lett., 46, 1230 (1981).
    60. M. Erman, J. B. Theetan, P. Frijlink, S. Gaillard, F. J. Hia and C. Alibert, J. Appl. Phys., 56, 3214 (1984).
    61. C. Alibert, S. Gaillard, J. A. Brum, G. Bastard, P. Frijlink and M. Erman, Solid state Commum. 53, 457 (1985).
    K. Capuder, P. E. Norris, H. Shen, Z. Hang and F. H. Pollak, J. Electron. Mater. 19, 295 (1990).
    62. T. M. Hsu, J. W. Sung, and W. C. Lee, J. Appl. Phys. 82, 5603 ( 1997).
    63. M. H. Hecht, Phys. Rev. B41, 7918 (1990).
    64. M. H. Hecht, J. Vac. Sci. Technol. B8, 1018 (1990).
    65. X. Yin, H. M. Chen, F. H. Pollak, Y. Chan, P. A. Montano, P. D. Kirchner, G. D. Pettit, and J. M. Woodall, J. Vac. Sci. Technol., A10, 133 (1992).
    66. H. K. Lipsanen and V. M. Airaksinen, Appl. Phys. Lett. 63, 2863 (1993).
    67. D. E. Aspnes, and A. A. Studna, Phys. Rev. B27, 985 (1983).
    68. F.H. Pollak, Microelecrons-Applications, Materials and Technology, (SRI International, Menlo Park, CA 1984), pp.185-284
    69. C.S Rama Rao, S. Sundaram, R.L. Schmidt, and J. Comas, J. Appl. Phys., 54, 1808(1983 )
    70. K. K. Tiong, P. M. Amirtharaj, F. H. Pollak and D. E. Aspnes, Appl. Phys. Lett. 44, 122(1984)
    71. M. Holtz, R. Zallen, and R. A. Sodler, J. Appl. Phys. 59, 1946(1986)
    72. Masahiko Tani, Kiyomi Sakai, Hajime Abe, Shin-ichi Nakashima,Jiroshi Jarima, Masanori Hangyo, Yasunori Tokuda, Jpn. J. Appl. Phys. 33, 4807(1994).

    下載圖示 校內:立即公開
    校外:2004-06-24公開
    QR CODE