簡易檢索 / 詳目顯示

研究生: 簡胤哲
Chien, Yin-Che
論文名稱: 隨機共振於微粒子視覺操縱之應用
Stochastic Resonance in Visual Manipulation of Micro Particles
指導教授: 張仁宗
Chang, Ren-Jung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 132
中文關鍵詞: 隨機共振自動聚焦邊緣偵測微粒子追蹤
外文關鍵詞: Stochastic resonance, autofocus, edge detection, particles tracking
相關次數: 點閱:125下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨機共振(Stochastic resonance)是一種利用增強噪音來達到信號增強的現象,目前廣泛運用在一維的信號處理上,經過許多學者研究下,此現象也可運用在二維的影像處理上。本文利用DSR-DWT演算法改善影像對比度,使得低對比度的影像,也能使用傳統的聚焦評價函數來計算聚焦平面,由本文研究結果可以得到,使用DSR-DWT演算法後的聚焦評價函數性能優於沒有使用DSR-DWT演算法。接著使用SSR法改善使用Sobel遮罩後的梯度影像作為邊緣偵測的演算法,此方法能增加邊緣偵測的效果。利用此邊緣偵測演算法與圓形霍氏轉換來做為粒子追蹤的演算法,實現直徑30~50μm微粒子自動聚焦、影像追蹤及推移。

    Stochastic resonance is a phenomenon of enhancing the signal response by adding noise. Stochastic Resonance is widely used in 1-D signal processing. After researchers' dedicating to their study, they found that the phenomenon also can be applied to 2-D image processing. In this thesis, DSR-DWT (Dynamic stochastic resonator with discrete wavelet transform) method is used to enhance the contrast of the low contrast image such that the focus plane can be obtained by calculating conventional focus function. Results of present research revel that the focus quality by utilizing DSR-DWT method is better than not used. Then, SSR (Suprathreshold stochastic resonator) method is used to improve the gradient image by Sobel operator for edge detection. This approach can improve the performance of edge detection. The edge detection algorithm together with circular Hough transformation is employed for tracking moving micro-particle. The present research finally achieves the goal of auto-focusing, tracking and pushing the 30 to 50 μm micro-particle.

    摘要 I ABSTRACT II 致謝 III 目錄 IV 表目錄 IX 圖目錄 X 符號表 XVI 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 1 1-2.1 聚焦函數 1 1-2.2 隨機共振 2 1-2.3 粒子追蹤 7 1-2.4 微粒子操縱 10 1-3 研究目標與方法 13 1-4 本文架構 14 第二章 隨機共振之理論與應用 15 2-1 隨機共振 15 2-1.1 隨機共振現象 15 2-1.2 靜態隨機共振 16 2-1.3 動態隨機共振 17 2-2 隨機共振於信號處理之應用 19 2-2.1 靜態隨機共振於一維信號處理之應用 19 2-2.2 動態隨機共振於一維信號處理之應用 21 2-3 隨機共振於影像處理之應用 23 2-3.1 影像改善效果評估計量 24 2-3.2 SSR演算法 25 2-3.3 Leng演算法 28 2-3.4 DSR-DWT演算法 30 2-4 本章總結 35 第三章 自動聚焦 36 3-1 自動聚焦方法 36 3-2 自動聚焦系統硬體架構 39 3-3 搜尋策略 41 3-3.1 全域搜尋策略(Scan-All Strategy) 41 3-3.2 二分法搜尋策略(Bisection Strategy) 41 3-3.3 往復聚焦搜尋策略(Refocus Strategy) 42 3-4 自動聚焦評價函數 43 3-4.1 聚焦函數特性 43 3-4.2 常用聚焦函數 44 3-5 對比度指標與改善 47 3-5.1 對比度評估指標 47 3-5.2 隨機共振子於對比度改善 47 3-6 聚焦評價函數比較結果與討論 48 3-7 靈敏度 58 3-8 本章總結 61 第四章 邊緣偵測與粒子追蹤 62 4-1 影像處理方法 62 4-1.1 侵蝕 62 4-1.2 細線化 63 4-1.3 大津演算法 65 4-2 常用邊緣偵測方法 66 4-2.1 一階導數 66 4-2.2 二階導數 68 4-2.3 Canny邊緣偵測 70 4-3 邊緣偵測評估指標 71 4-4 本文邊緣偵測架構與影像測試 76 4-4.1 隨機共振法選擇 76 4-4.2 本文邊緣偵測架構 77 4-4.3 真實影像測試結果 82 4-5 微粒子影像追蹤 84 4-5.1 霍氏轉換 84 4-5.2 圓形霍氏轉換 85 4-5.3 極座標系統相似性(PCSS) 87 4-5.4 樣板比對 89 4-5.5 本文微粒子影像追蹤架構 89 4-6 本章總結 91 第五章 系統整合與測試 92 5-1 系統整合 92 5-2 硬體整合 92 5-3 人機介面 96 5-4 影像校正 99 5-5 自動聚焦實現 99 5-6 微粒子影像追蹤 103 5-7 微粒子推移 108 5-8 本章總結 117 第六章 結論與未來展望 118 6-1 結論 118 6-2 未來展望 119 參考文獻 120 附錄A步進馬達與驅動電路 124 附錄B介面卡技術資料 128 附錄C使用Matlab將影像加入高斯白噪音 131

    [1] F.C. Groen, I.T. Young, G. Ligthart, “A comparison of different focus functions for use in autofocus algorithms,” Cytometry, vol. 6, no. 2, pp. 81–91, 1985.
    [2] L. Firestone, K. Coo, K. Culp, N. Talsania, K. Preston, “Comparison of autofocus methods for automated microscopy,” Cytometry, vol. 12, pp. 195–206, 1991.
    [3] M. Subbarao, T.S. Choi, A. Nikzad, “Focusing techniques,” J Opt Eng, vol. 32, pp. 824–2836, 1993.
    [4] T. T. E. Yeo, S.H. Ong, Jayasooriah, R. Sinniah, “Autofocusing for tissue microscopy,” Image Vis Comput, vol. 11, pp. 629–639, 1993.
    [5] A. Santos, C. Ortiz De Solorzano, J.J. Vaquero, J. M. Peña, N. Malpica, F. Del Pozo, “Evaluation of autofocus functions in molecular cytogenetic analysis,” Journal of Microscopy, vol. 188, pp. 264–272,1997.
    [6] G. Yang, B. J. Nelson, “Wavelet-based auto-focusing and unsupervised segmentation of microscopic images,” Proc IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2143–2148, 2003.
    [7] G. Yang, B. J. Nelson, “Micromanipulation contact transition control by selective focusing and microforce control,” Proc IEEE International Conference on Robotics and Automation, pp. 3200–3206, 2003.
    [8] H. Xie, W.B. Rong, L.N. Sun, “Construction and Evaluation of a Wavelet-Based Focus Measure for Microscopy Imaging,” Microscopy Research and Technique, vol. 70, pp. 987–995, 2007.
    [9] R. Benzi, A. Sutera, A. Vulpiani, “The mechanism of Stochastic Resonance,” J.Physics. A: Math. and General, vol.14, pp. L453 -L457, 1981.
    [10] B. McNamara, K. Wiesenfeld, R. Roy, “Observation of Stochastic Resonance in a Ring Laser,” Physical Review Letters A, vol. 60, no.25 , pp. 2626–2629, 1988.
    [11] N. G. Stocks, “Suprathreshold stochastic resonance in multilevel threshold systems,” Physical Review Letters, vol. 84, no. 11, pp.2310-2313, 2000.
    [12] J. J. Collins, C. C. Chow, T. T. Imhoff, “Stochastic resonance without tuning,” Nature, vol. 376, no. 11, pp.236-238, 1995.
    [13] M. Misono, T. Kohmoto, Y. Fukuda, M. Kunitomo, “Noise-enhanced transmission of information in a bistable system,” Physical Review E, vol. 58, no.5 , pp. 5602–5607, 1998.
    [14] T. Yang, “Adaptively optimizing stochastic resonance in visual system,” Physics Letters A, vol. 245, pp. 79–86, 1998.
    [15] F. Vaudelle, J. Gazengel, G. Rivoire, X. Godivier, F. Chapeau-Blondeau, “Stochastic resonance and noise-enhanced transmission of spatial signals in optics: the case of scattering,” J. Opt. Soc. Am. B, vol. 15, no.11, 1998.
    [16] R. K. Jha, R. Chouhan, and P. K. Biswas, “Noise-induced contrast enhancement of dark images using non-dynamic stochastic resonance,” National Conference on Communications (NCC), pp. 1–5, 2012.
    [17 ] R. K. Jha, R. Chouhan, “ Noise-induced contrast enhancement using stochastic resonance on singular values,” Signal, Image and Video Processing, pp. 1–9, 2012.
    [18] R. Chouhan, R. K. Jha, P. K. Biswas, “Wavelet-based contrast enhancement of dark images using dynamic stochastic resonance,” Proceedings of the Eighth Indian Conference on Computer Vision, Graphics and Image Processing. ACM, 2012.
    [19]T. Uemura, F. Yamamoto, F. Ohmi, “A high-speed algorithm of image analysis for real time measurement of two-dimensional velocity distribution,” Flow Visualization, ASME FED, vol. 85, pp. 129–34, 1989.
    [20] K. Nishino, N. Kasagi, M. Hirata, “Three-dimensional particle tracking velocimetry based on automated digital image processing,”
    J. Fluids Eng, vol. 111, pp. 384-391, 1989.
    [21] X.D. Ruan, W.F. Zhao, “A novel particle tracking algorithm using polar coordinate system similarity,” Acta Mech Sinica, vol. 21, pp. 430-435, 2005.
    [22] J. Willneff, “3D Particle Tracking Velocimetry based on image and object space information,” ISPRS Commission V Symposium, 2002.
    [23] E. Vela, “Non-contact Mesoscale Manipulation Using Laser Induced Convection Flows,” International Conference on Intelligent Robots and Systems, IEEE/RSJ, pp. 913-918, 2008.
    [24] H. Maruyama, “Immobilization of Individual cells by local photo polymerization on a chip,” Analyst, The Royal Society of Chemistry, vol. 3, pp. 304-310, 2005.
    [25] T.P. Hunt, “Dielectrophoresis tweezers for single cell manipulation,” biomedical micro devices, Springer US, vol. 8, no. 3 , pp. 227-230, 2006.
    [26] J.J. Gorman, “Probe-Based Micro-Scale Manipulation and Assembly Using Force Feedback,” Proceeding of the International Conference on Robotic and Remote System for Hazardous Environment, pp. 621-628, 2006.
    [27] N. Yoshida, “Piezo-actuated Mouse Intracytoplasmic Sperm Injection (ICSI),” Nature Protocols, Nature, vol. 2, no.2, pp. 296-304, 2007.
    [28] T. Trüper, “Transporting cells with mobile microrobots,” IEEE Proceedings Nanobiotechnology, IET, vol. 151, no. 4, pp. 145- 150, 2004.
    [29] B. McNamara, K. Wiesenfeld, “Theory of stochastic resonance,” Physics Review A, vol. 39, no. 9, pp. 4854 - 4869, 1989.
    [30] 冷永剛, 趙爾華, 石鵬, 張瑩, “二維隨機共振參數調節的影像處理, ” 天津大學學報, vol.44, no.10, pp. 907-913, 2011.
    [31] V. P. Rallabandi, P. K. Roy, “Magnetic resonance image enhancement using stochastic resonance in Fourier domain,” Magnetic Resonance Imaging, vol. 28, pp. 1361-1373, 2010.
    [32] R.C. Gonzales, R.E. Woods, Digital Image Processing, second edition, Prentice Hall, 2002.
    [33] J. Canny, “A Computational Approach to Edge Detection,” Transactions on Pattern Analysis and Machine Intelligence, IEEE, vol. PAMI-8, no. 6, pp. 679-698, 1986.
    [34] I.E. Abdou, W.K. Pratt, “Quantitative Design and Evaluation of Enhancement/Thresholding Edge Detectors”, IEEE, vol.67, no. 5, pp. 753-763, 1979.
    [35] S. Pande, V.S. Bhadouria, D.Ghoshal, “A study on edge marking scheme of various standard edge detectors”, International Journal of Computer Applications, vol. 44, no.9, pp.33-37, 2012.
    [36] 簡佑丞, “ 影像伺服液體環境之微粒子” 國立成功大學機械工程學系碩士論文, June, 2011.
    [37]P.V.C. Hough, “Method and means for recognizing complex patterns,” U. S. Patent no. 3069654, 1962.
    [38] R.O. Duda, P. E. Hart, “Use of the hough transformation to detect lines and curves in pictures,” Comm. ACM, vol. 15, pp. 11-15, 1972.
    [39] 廖孟源, “二維經驗模態分解於微粒子影像伺服應用”, 國立成功大學機械工程學系碩士論文, June, 2012.

    無法下載圖示 校內:2018-07-23公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE