| 研究生: |
羅凱鴻 Luo, Kai-Hong |
|---|---|
| 論文名稱: |
石墨烯奈米基板上的螢光光譜分析 The Fluorescence Analysis on Graphene-Based Nano Plate |
| 指導教授: |
崔祥辰
Chui, Hsiang-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 石墨烯 、螢光 、焠火 、氫端石墨烯 |
| 外文關鍵詞: | graphene, fluorescence, quenching, hydrogen-terminated graphene |
| 相關次數: | 點閱:103 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
研究關於羅丹明6G在單層石墨烯的基板上的螢光焠火效應(Quenching Effect),並在石墨烯底下先熱蒸鍍上一層銀,並研討是銀跟石墨烯影響羅丹明6G的螢光變化。而石墨烯是利用化學氣相沉積(Chemical Vapor Deposition, CVD)所合成的,並利用溼式轉移法轉移到氧化矽的基板上,另外在部分石墨烯所覆蓋的位置以氫電漿處理,這個已經做過氫電漿處理的石墨烯可以叫做氫端石墨烯(Hydrogen-Terminated Graphene),這種經過處理的石墨烯和原來的石墨烯有些許相似,但是在碳與碳之間的π鍵被打斷並且以σ鍵接上氫原子,一個π鍵轉換成兩個接氫的σ鍵,所以在於石墨烯的導電度變低,因為它的導電性跟電子可否在石墨烯平面傳遞有關,而π鍵的存在可以使碳與碳之間有多的電子,並且在石墨烯的特殊鍵節結構下可以使π鍵轉移產生電子軌域移動,因而產生導電性,然而氫端石墨烯可以產生出極薄的絕緣體材料,然而我們討論在有做過氫電漿處理的石墨烯對螢光焠火效應的影響。
我們量測了羅丹明6G在六種不同的基板上所產生的螢光訊號;氧化矽/矽基板、銀/氧化矽/矽基板、石墨烯/氧化矽/矽基板、石墨烯/銀/氧化矽/矽基板、氫端石墨烯/氧化矽/矽基板和氫端石墨烯/銀/氧化矽/矽基板。
我們發現氫端石墨烯有減緩57%的螢光焠火效應到石墨烯上。,另外如果銀的樣本,氫端石墨烯可以減緩75%的螢光焠火效應石墨烯和銀上。
We reported the quenching effect of rhodamine 6G appeared on the single atom thickness of graphene flake over the silver film or not. The silver film was
deposited on silicon-dioxide/silicon substrate. And then, the monolayer graphene flake was transferred to the silver/ silicon-dioxide/silicon substrate by chemical vapor deposition, and was treated with hydrogen plasma. The graphene treated with hydrogen plasma was called the hydrogen-terminated graphene. It maybe was similar to pristine graphene. But the characteristics of graphene and hydrogen-terminated graphene were different. The π bonds (C=C) of the hydrogen-terminated graphene were destroyed by hydrogen plasma, so the resistance of hydrogen-terminated graphene was higher than the resistance of pristine graphene.[4] Then, we used the graphene treated with hydrogen plasma to discuss the energy transfer of quenching effect.
We measured rhodamine 6G on six substrates, for example: silicon-dioxide/silicon, silver/silicon-dioxide/silicon, graphene/ silicon -dioxide /silicon, graphene/silver/silicon -dioxide/silicon, hydrogen-terminated graphene/silicon -dioxide/silicon and hydrogen-terminated graphene/silver/silicon -dioxide/silicon. Then, the quenching effect was obviously resisted from graphene and silver by hydrogen-terminated graphene. The quenching effect was reduced about 57 percent on the graphene after hydrogen plasma treatment. Moreover, it was reduced about 75 percent on hydrogen-terminated graphene covering silver film. The mode of energy transfer ways was constructed to explain the phenomenon.
Reference
[1] L. M. Xie, X. Ling, Y. Fang, J. Zhang, and Z. F. Liu, Jul 29 2009, "Graphene as a Substrate To Suppress Fluorescence in Resonance Raman Spectroscopy," Journal of the American Chemical Society, vol. 131, pp. 9890-+.
[2] X. Ling, L. M. Xie, Y. Fang, H. Xu, H. L. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. F. Liu, Feb 2010, "Can Graphene be used as a Substrate for Raman Enhancement?," Nano Letters, vol. 10, pp. 553-561, Feb 2010.
[3] T. Gokus, R. R. Nair, A. Bonetti, M. Bohmler, A. Lombardo, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and A. Hartschuh, Dec 2009, "Making Graphene Luminescent by Oxygen Plasma Treatment," Acs Nano, vol. 3, pp. 3963-3968.
[4] C. Y. Liu, K. C. Liang, W. L. Chen, C. H. Tu, C. P. Liu, and Y. Tzeng, Aug 29 2011, "Plasmonic coupling of silver nanoparticles covered by hydrogen-terminated graphene for surface-enhanced Raman spectroscopy," Optics Express, vol. 19, pp. 17092-17098.
[5] Z. Q. Luo, T. Yu, Z. H. Ni, S. H. Lim, H. L. Hu, J. Z. Shang, L. Liu, Z. X. Shen, and J. Y. Lin, Feb 10 2011, "Electronic Structures and Structural Evolution of Hydrogenated Graphene Probed by Raman Spectroscopy," Journal of Physical Chemistry C, vol. 115, pp. 1422-1427.
[6] T. Sen, S. Sadhu, and A. Patra, Jul 23 2007, "Surface energy transfer from rhodamine 6G to gold nanoparticles: A spectroscopic ruler," Applied Physics Letters, vol. 91.
[7] T. Sen and A. Patra, Mar 6 2008, "Resonance energy transfer from rhodamine 6G to gold nanoparticles by steady-state and time-resolved spectroscopy," Journal of Physical Chemistry C, vol. 112, pp. 3216-3222.
[8] Y. Chen, M. B. O'Donoghue, Y. F. Huang, H. Z. Kang, J. A. Phillips, X. L. Chen, M. C. Estevez, C. Y. J. Yang, and W. H. Tan, Nov 24 2010, "A Surface Energy Transfer Nanoruler for Measuring Binding Site Distances on Live Cell Surfaces," Journal of the American Chemical Society, vol. 132, pp. 16559-16570.
[9] C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse, Mar 9 2005, "Nanometal surface energy transfer in optical rulers, breaking the FRET barrier," Journal of the American Chemical Society, vol. 127, pp. 3115-3119.
[10] L. W. H. F. J. Duarte, 1990, "Dye Laser Principles " Academic.
[11] Life technologies.
[12] A. K. Geim and K. S. Novoselov, Mar 2007, "The rise of graphene," Nature Materials, vol. 6, pp. 183-191.
[13] X. Du, I. Skachko, A. Barker, and E. Y. Andrei, Aug 2008, "Approaching ballistic transport in suspended graphene," Nature Nanotechnology, vol. 3, pp. 491-495.
[14] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, Jun 2008, "Ultrahigh electron mobility in suspended graphene," Solid State Communications, vol. 146, pp. 351-355.
[15] Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nov 10 2005, "Experimental observation of the quantum Hall effect and Berry's phase in graphene," Nature, vol. 438, pp. 201-204.
[16] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Oct 22 2004, "Electric field effect in atomically thin carbon films," Science, vol. 306, pp. 666-669.
[17] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim Nov 3 2006, "Raman spectrum of graphene and graphene layers," Physical Review Letters, vol. 97,.
[18] M. Hofmann, 2008, "In-Situ Sample Rotation as a Tool to Understand Chemical Vapor Deposition Growth of Long Aligned Carbon Nanotubes".
[19] X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Jun 5 2009, "Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils," Science, vol. 324, pp. 1312-1314.
[20] X. S. Li, Y. W. Zhu, W. W. Cai, M. Borysiak, B. Y. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, Dec 2009, "Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes," Nano Letters, vol. 9, pp. 4359-4363.
[21] B. M. Bussian and C. Sander, May 16 1989, "How to Determine Protein Secondary Structure in Solution by Raman-Spectroscopy - Practical Guide and Test Case Dnase-I," Biochemistry, vol. 28, pp. 4271-4277.
[22] R. K. Khanna, 1981, "Rayleigh Streeung und Raman Effekt," pp.45.
[23] D. A. S. Analysis F.James Holler,2006, " Principles Of Instrumental Analysis ".
[24] O'Reilly, 1975 ' Journal of Criminal Justice Education', pp.49.
[25] D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, and W. W. Webb, 1976, "Mobility Measurement by Analysis of Fluorescence Photobleaching Recovery Kinetics," Biophysical Journal, vol. 16, pp. 1055-1069.
[26] B. L. Sprague, R. L. Pego, D. A. Stavreva, and J. G. McNally, Jun 2004, "Analysis of binding reactions by fluorescence recovery after photobleaching," Biophysical Journal, vol. 86, pp. 3473-3495.
[27] R. S. Swathi and K. L. Sebastian, Jun 21 2007, "Resonance energy transfer from a fluorescent dye molecule to plasmon and electron-hole excitations of a metal nanoparticle," Journal of Chemical Physics, vol. 126.
[28] R. S. Swathi and K. L. Sebastian, Aug 7 2008, "Resonance energy transfer from a dye molecule to graphene," Journal of Chemical Physics, vol. 129.
[29] R. S. Swathi and K. L. Sebastian, Feb 28 2009, "Long range resonance energy transfer from a dye molecule to graphene has (distance)(-4) dependence," Journal of Chemical Physics, vol. 130.
[30] Filipesc.N, J. R. Demember, and F. L. Minn, 1969, "Intramolecular Triplet-Triplet Energy Transfer between Nonconjugated Chromophores with Fixed Orientation," Journal of the American Chemical Society, vol. 91, pp. 4169-&.
[31] S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem, and K. Leo, May 14 2009, "White organic light-emitting diodes with fluorescent tube efficiency," Nature, vol. 459, pp. 234-U116.
[32] A. Monguzzi, J. Mezyk, F. Scotognella, R. Tubino, and F. Meinardi, Nov 2008, "Upconversion-induced fluorescence in multicomponent systems: Steady-state excitation power threshold," Physical Review B, vol. 78.
[33] F. Wang, R. R. Deng, J. Wang, Q. X. Wang, Y. Han, H. M. Zhu, X. Y. Chen, and X. G. Liu, Dec 2011, "Tuning upconversion through energy migration in core-shell nanoparticles," Nature Materials, vol. 10, pp. 968-973.
[34] D.-P. T. Huai-Yi Xie, 2010, "The Theoretical Analysis of Energy Transfer Rate Near Films.", pp.1-4.
[35] v. d. W. V. a. Radii, 1964, "van der Waals Volumes and Radii," J. Phys. Chem.
[36] F. S. W. Alessandro Esposito, 2004, "Microscopy," Current Protocols in Cell Biology.
[37] A. W. C. Wolfgang Becker, Jr, J.P. Toennies, W. Zinth, 2005, "Advanced Time-Correlated Single Photon Counting Techniques" Chemical Physics.
[38] D. L. Dexter, 1953, "A theory of sensitized luminescence in solids," J. Chem. Phys.
[39] A. Peraiah and M. S. Rao, Jul 2002, "Radiative transfer in the distorted and irradiated atmospheres of close binary components," Astronomy & Astrophysics, vol. 389, pp. 945-952.
[40] O. W. Kolling, 1976, "Red Shift for Solvatochromic Indicators as a Measure of Solvent Basicity in Polar Aprotic Media," Analytical Chemistry, vol. 48, pp. 884-886.
[41] A. M. Michaels, M. Nirmal, and L. E. Brus, Nov 3 1999, "Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals," Journal of the American Chemical Society, vol. 121, pp. 9932-9939.
[42] X. Ling and J. Zhang, Feb 17 2011, "Interference Phenomenon in Graphene-Enhanced Raman Scattering," Journal of Physical Chemistry C, vol. 115, pp. 2835-2840.
[43] R. S. Swathi and K. L. Sebastian, Mar 14 2010, "Excitation energy transfer from a fluorophore to single-walled carbon nanotubes," Journal of Chemical Physics, vol. 132.