簡易檢索 / 詳目顯示

研究生: 林立凱
Lin, Li-Kai
論文名稱: 應用強健卡爾曼濾波器於水下載具慣行導航模組校正
Alignment of the Inertial Navigation System of Underwater Vehicles by Using Robust Kalman Filter
指導教授: 陳永裕
Chen, Yung-Yue
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 71
中文關鍵詞: 慣性模組校正立體空間慣性定位演算法強健自適應性濾波器水下載具數位信號處理
外文關鍵詞: Inertial measurement unit alignment, 3D space inertial navigation, robust adaptive filter, autonomous underwater vehicle, digital signal processing
相關次數: 點閱:117下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將探討如何使用遞歸式最小平方近似法 (Recursive Least Square Method)求解慣性模組的校正矩陣,及如何適當選用水下載具之感測器後利用強健型卡爾曼濾波器(Robust Kalman Filter)實現雜訊抑制,並確保估測器能在無法使用GPS進行校正的條件下,準確估測無平移水下載具之姿態及位置。此慣性定位之演算法流程大致為1.針對系統進行定義,並建構出此系統之差分方程式,2.再藉由自體-大地座標轉換理論(Principle Rotation)將慣性模組之感測值導入此差分方程,3.最後應用重力加速度分量、陀螺儀指北技術(North Finding Technique)、船速計與強健型卡爾曼濾波器針對此系統進行濾波進而得出準確的估測值,與4.最後再將此資訊界座標轉換理論轉換至大地座標以達成慣性定位之實作。

    The main contribution of this thesis is to derive the complete compensation matrix of all used inertial sensors by using Recursive Least Square Method and select suitable sensors for underwater vehicles. Furthermore, elimination of noises of these sensors can be done via a Robust Kalman Filter. Thus, attitude and position of the proposed inertial sensing system can be estimated precisely, even an underwater vehicle is sheltered and cannot be calibrated by GPS signal. The estimated procedure of inertial alignment algorithm can be briefly expressed as follows: 1. Describe the mathematical expression for the inertial measurement unit, 2. Import sensor signals into the this model by using Principle Rotation criterion, 3. Purify the noised inertial sensing signals with adopting sensors and methodologies including, accelerator for measuring gravity, ship speedometer, the northing finding technique, and a robust Kalman Filter, and 4. Transfer the estimation results into earth-frame for navigation of underwater vehicles.

    中文摘要 i Abstract ii Content iii List of Table v List of Figure vi 致謝 ix Nomenclature x Chapter 1. Introduction 1 Chapter 2. Inertial Alignment Method 4 2.1 Mathematical Modeling of the IMU 4 2.1.1 Gyroscope error compensation 4 2.1.2 Accelerometer error compensation 5 2.1.3 Coefficients Searching 6 2.2 Mathematic Model of Inertial Navigation Unit 11 2.2.1 Analysis of Noises 11 2.2.2 Principle Rotations 17 2.3 Robust Kalman Filter 20 2.3.1 Selecting Sensor 20 2.3.2 Northfinding Techniques 22 2.3.3 Robust Kalman Filter 25 Chapter 3. Practical Test 28 3.1 Test Environment 28 3.1.1 Rotation and Movement Stage 28 3.1.2 Gyroscope and Accelerometer 29 3.2 Identification of Compensation Matrix 30 3.2.1 RLS Method 31 3.2.2 Effect of Compensation Matrix 35 3.3 Robust Kalman Filter Design 41 3.3.1 Standing Test 42 3.3.2 Rotation Test 45 3.3.3 Mixed Rotation and Movement Test 51 Chapter 4: Conclusions 67 Chapter 5: Future Work 68 References 69

    [1] J. G. Lee, C. G. Park, and H. W. Park, “Multiposition Alignment of Strapdown Inertial Navigation System,” IEEE Transactions on Aerospace and Electronic Systems, vol. 29, no. 4, pp. 1323-1328, 1993.
    [2] X. Xu, X. Xu, T. Zhang, and Z. Wang, “In-Motion Filter-QUEST Alignment for Strapdown Inertial Navigation Systems,” IEEE Transactions on Instrumentation and Measurement, vol. 67, no. 8, pp. 1979-1993, 2018.
    [3] Z. F. Syed, P. Aggarwal, X. Niu, and N. El-Sheimy, “Civilian Vehicle Navigation: Required Alignment of the Inertial Sensors for Acceptable Navigation Accuracies,” IEEE Transactions on Vehicular Technology, vol. 57, no. 6, pp. 3402-3412, 2008.
    [4] P. M. G. Silson, “Coarse Alignment of a Ship's Strapdown Inertial Attitude Reference System Using Velocity Loci,” IEEE Transactions on Instrumentation and Measurement, vol. 60, no. 6, pp. 1930-1941, 2011.
    [5] J. Li, J. Fang, and M. Du, “Error Analysis and Gyro-Bias Calibration of Analytic Coarse Alignment for Airborne POS,” IEEE Transactions on Instrumentation and Measurement, vol. 61, no. 11, pp. 3058-3064, 2012.
    [6] L. Chang, J. Li, and S. Chen, “Initial Alignment by Attitude Estimation for Strapdown Inertial Navigation Systems,” IEEE Transactions on Instrumentation and Measurement, vol. 64, no. 3, pp. 784-794, 2015.
    [7] L. Chang, F. Qin, and S. Jiang, “Strapdown Inertial Navigation System Initial Alignment Based on Modified Process Model,” IEEE Sensors Journal, vol. 19, no. 15, pp. 6381-6391, 2019.
    [8] Z. Zhang, “Cameras and Inertial/Magnetic Sensor Units Alignment Calibration,” IEEE Transactions on Instrumentation and Measurement, vol. 65, no. 6, pp. 1495-1502, 2016.
    [9] G. A. Einicke, J. T. Malos, D. C. Reid, and D. W. Hainsworth, “Riccati Equation and EM Algorithm Convergence for Inertial Navigation Alignment,” IEEE Transactions on Signal Processing, vol. 57, no. 1, pp. 370-375, 2009.
    [10] Y. Liu, X. Xu, X. Liu, Y. Yao, L. Wu, and J. Sun, “A Self-Alignment Algorithm for SINS Based on Gravitational Apparent Motion and Sensor Data Denoising,” Sensors (Basel, Switzerland), vol. 15, no. 5, pp. 9827-9853, 2015.
    [11] J. Lu, L. Xie, and B. Li, “Analytic Coarse Transfer Alignment Based on Inertial Measurement Vector Matching and Real-Time Precision Evaluation,” IEEE Transactions on Instrumentation and Measurement, vol. 65, no. 2, pp. 355-364, 2016.
    [12] L. Chang, Y. Li, and B. Xue, “Initial Alignment for a Doppler Velocity Log-Aided Strapdown Inertial Navigation System With Limited Information,” IEEE/ASME Transactions on Mechatronics, vol. 22, no. 1, pp. 329-338, 2017.
    [13] F. Jiang Cheng, and W. De Jun, “A Fast Initial Alignment Method for Strapdown Inertial Navigation System on Stationary Base,” IEEE Transactions on Aerospace and Electronic Systems, vol. 32, no. 4, pp. 1501-1504, 1996.
    [14] Q. Cai, G. Yang, N. Song, and Y. Liu, “Systematic Calibration for Ultra-High Accuracy Inertial Measurement Units,” Sensors (Basel, Switzerland), vol. 16, no. 6, pp. 940, 2016.
    [15] Z. Jing, and Sclaroff, “Segmenting Foreground Objects from a Dynamic Textured Background via a Robust Kalman Filter,” Proceedings Ninth IEEE International Conference on Computer Vision, vol. 1, no. 1, pp. 44-50 2003.

    無法下載圖示 校內:2025-08-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE