簡易檢索 / 詳目顯示

研究生: 張文騰
Chang, Wen-Teng
論文名稱: 轉錄因子alpha-Pal/NRF-1在調控integrin-associated protein/CD47基因與神經突的角色
The roles of transcription factor alpha-Pal/NRF-1 in regulating integrin-associated protein/CD47 gene and neurite outgrowth
指導教授: 黃阿敏
Huang, A-Min
學位類別: 博士
Doctor
系所名稱: 醫學院 - 基礎醫學研究所
Institute of Basic Medical Sciences
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 94
中文關鍵詞: IAP神經突生長啟動子Alpha-Pal/NRF-1EMSA
外文關鍵詞: Alpha-Pal/NRF-1, EMSA, IAP, neurite outgrowth, promoter
相關次數: 點閱:92下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   Integrin-associated protein簡稱IAP或CD47。IAP是一個分子量50 KD大小的膜蛋白,它會表現在神經系統及免疫系統等組織中。IAP已被證實是一個與記憶相關的基因。在學習與記憶過程中,IAP的表現量會被誘發而增加。功能性研究中,抑制IAP的功能會降低動物嫌惡學習模式的記憶分數。為了瞭解IAP的表現是如何被調控的,我們選殖了一段人類IAP基因啟動子靠5’端的片段,並且在人類神經母細胞株IMR-32、肝癌細胞株HepG2及初代培養的胚胎鼠皮層細胞上,來研究IAP基因啟動子的活性。在不同長度的啟動子活性分析上,發現核心啟動子片段位於轉譯起始點前-232到-12的位置上。利用突變分析法及gel electrophoretic mobility shift assay證實,具有一Alpha-Pal/NRF-1結合序列位於核心啟動子上。Competition assay和supershift assay也同時證明alpha-Pal/NRF-1這個轉錄因子確實可以結合在這一段序列上。在細胞內大量表現alpha-Pal/NRF-1蛋白,可以促進alpha-Pal/NRF-1與核酸結合的能力。大量表現完整的alpha-Pal/NRF-1會促進IAP基因的啟動子活性。反之,大量表現具核酸結合能力但不具轉錄活性的alpha-Pal/NRF-1突變蛋白,則會抑制IAP基因的啟動子活性。這些現象同時在培養下的人類細胞株及初代培養的胚胎鼠皮層細胞都可觀察到。根據以上的實驗,我們發現了轉錄因子alpha-Pal/NRF-1是調控人類IAP基因表現的必要因子。
      本篇論文的第二部份主要在探討轉錄因子alpha-Pal/NRF-1在神經細胞的功能。我們將帶有alpha-Pal/NRF-1與綠螢光蛋白基因的質體送入細胞內,並且量測這些細胞神經突的相關參數來探討alpha-Pal/NRF-1在神經分化的角色。穩定或短暫大量表現完整的alpha-Pal/NRF-1會顯著誘發神經突生長,同時也會促進神經突的長度,這個現象無論細胞是培養在含百分之十胎牛血清的正常培養基下,或不含血清的培養基下都可觀察到。相對而言,表現突變的alpha-Pal/NRF-1則會抑制神經突的誘發與延展。外送完整alpha-Pal/NRF-1在小鼠神經母細胞株Neuro-2A、神經生長因子誘發的PC12細胞以及初代培養的胚胎鼠皮層細胞,也都同時可觀察到神經突增生的現象。表示這一現象具有普遍性,而不是只發生在人類神經母細胞株上。將細胞培養在可誘發神經突的無血清培養基時,發現alpha-Pal/NRF-1的核酸結合能力及其下游基因IAP的表現量都會增加。送入反向序列的IAP基因,則會抑制alpha-Pal/NRF-1所誘發的神經突生長功能。以上這些發現指出,alpha-Pal/NRF-1在神經細胞的其中一項功能是去調控神經突生長,而這個現象部分而言,是透過alpha-Pal/NRF-1的下游基因IAP來調控。

     Integrin-associated protein (IAP or CD47) is a 50 KD transmembrane protein and expressed in a variety of tissues, including the nervous system and immune system. IAP has been identified as a memory-related gene. It was upregulated during the process of learning and memory. Functional blockage of IAP function also decreased retention score in aversive learning. To understand how cells control the expression of the IAP gene, we cloned the 5' proximal region of the human IAP gene and investigated IAP promoter activity by transient transfection in the human neuroblastoma IMR-32, hepatoma HepG2 cells and primary cortical cells. Deletion analysis identified a core promoter of the human IAP gene located between nucleotide positions -232 and -12 relative to the translation initiation codon. Site-directed mutagenesis and gel electrophoretic mobility shift assay identified an alpha-Pal/NRF-1 binding element within the IAP core promoter. Competition assays and supershift assays using the alpha-Pal/NRF-1 antiserum confirmed the binding of this transcription factor on the alpha-Pal/NRF-1 site. Overexpression of the DNA-binding domain of alpha-Pal/NRF-1 in cells enhanced DNA-alpha-Pal/NRF-1 binding in vitro. Furthermore, overexpression of full-length alpha-Pal/NRF-1 significantly enhanced IAP promoter activity while overexpression of dominant-negative mutant reduced promoter activity both in the cultured human cell lines and primary mouse cortical cells. These results revealed that alpha-Pal/NRF-1 is an essential transcription factor in regulating human IAP gene expression.
     The second part of this thesis is to study the functions of alpha-Pal/NRF-1 in neurons. Transfection of GFP-alpha-Pal/NRF-1 constructs and measurement of neurite parameters were used to evaluate the effects of alpha-Pal/NRF-1 in neuronal differentiation. Stable or transient expression of full-length alpha-Pal/NRF-1 in IMR-32 cells significantly induced neurite outgrowth and increased the length of neurites both in medium containing 10% fetal bovine serum and in serum-free medium. In contrast, the dominant-negative mutant of alpha-Pal/NRF-1 inhibited the induction and extension of neurites. Ectopic expression of full-length alpha-Pal/NRF-1 also increased the induction of neurite outgrowth in Neuro-2A, NGF-treated PC12 cells, and primary mouse cortical neurons. Serum deprivation upregulated the alpha-Pal/NRF-1 binding activity and the expression of the downstream IAP gene. The IAP anti-sense cDNA significantly inhibited the increase of neurite outgrowth by alpha-Pal/NRF-1. These findings indicate that alpha-Pal/NRF-1 plays an important role in regulating neurite outgrowth, partly mediated via its downstream IAP gene.

    Contents -------------------------------------------------------------------i Figure contents ------------------------------------------------------------iv 誌謝 -----------------------------------------------------------------------vi Abbreviation ---------------------------------------------------------------vii 中文摘要 -------------------------------------------------------------------1 Abstract -------------------------------------------------------------------3 Chapter 1 Introduction 1-1 The processes of neurite outgrowth ----------------------------------5 1-2 Molecules in regulation of neurite outgrowth ------------------------5 1-2-1 Extrcellular matrix-associated proteins ---------------------------6 1-2-2 Cell adhesion molecules -------------------------------------------7 1-2-3 Slit family proteins ----------------------------------------------8 1-2-4 Semaphorins, ephrins, and netrins ---------------------------------8 1-2-5 VEGF --------------------------------------------------------------9 1-2-6 Neurotrophins -----------------------------------------------------10 1-3 Reconstruction of cytoskeleton in neurite outgrowth -----------------10 1-4 The relationship between transcription and neurite outgrowth --------11 1-4-1 CREB and immediate-early genes ------------------------------------11 1-4-2 NF-kappaB ---------------------------------------------------------12 1-4-3 RAR ---------------------------------------------------------------13 1-4-4 Other transcription factors ---------------------------------------13 1-5 Nuclear transcription factoralpha-Pal/NRF-1 -----------------------13 1-6 Neural functions of alpha-Pal/NRF-1 ---------------------------------15 1-7 Integrin-associated protein (IAP) -----------------------------------16 1-8 Specific aims -------------------------------------------------------18 Chapter 2 Materials and methods 2-1 Cell culture --------------------------------------------------------19 2-2 Isolation of stable cell lines --------------------------------------19 2-3 RNA isolation and reverse transcription (RT)-PCR --------------------19 2-4 Plasmid constructs --------------------------------------------------21 2-5 Transient transfection ----------------------------------------------23 2-6 Dual-luciferase assay -----------------------------------------------24 2-7 Preparation of nuclear extracts -------------------------------------24 2-8 Gel electrophoretic mobility shift assays (EMSA) --------------------25 2-9 Primary cortical culture --------------------------------------------26 2-10 Immunofluorescence microscopy --------------------------------------27 2-11 Measurement of neurite outgrowth -----------------------------------28 2-12 Statistical analysis -----------------------------------------------28 Chapter 3 Results 3-1 Expression of integrin-associated protein gene in human IMR-32 and HepG2 cells ----------------------------------------------------------------29 3-2 Determination of IAP promoter activity in IMR-32 and HepG2 cells ----29 3-3 Identification of cis-elements in the core promoter of the IAP gene -30 3-4 Alpha-Pal/NRF-1 is a transcription factor regulating the IAP promoter activity -------------------------------------------------------------------31 3-5 Regulation of the IAP promoter activity by alpha-Pal/NRF-1 in primary cells ----------------------------------------------------------------------34 3-6 Stable overexpression or ectopic expression of alpha-Pal/NRF-1 increased neurite outgrowth in IMR-32 cells --------------------------------34 3-7 Dominant-negative alpha-Pal/NRF-1 inhibited neurite outgrowth -------36 3-8 Alpha-Pal/NRF-1 increased neurite outgrowth in other cell lines -----37 3-9 Alpha-Pal/NRF-1 regulated neurite outgrowth in primary cortical cells37 3-10 Upregulation of IAP expression during serum deprivation ------------38 3-11 Anti-sense IAP cDNA suppressed an alpha-Pal/NRF-1-induced increase of neurite outgrowth ----------------------------------------------------------38 Chapter 4 Discussion 4-1 Alpha-Pal/NRF-1 regulates IAP gene expression -----------------------39 4-2 Alpha-Pal/NRF-1 regulates neurite outgrowth -------------------------41 4-3 Transcriptional coactivation of alpha-Pal/NRF-1 and other transcription factors --------------------------------------------------------------------43 4-4 Possible role of alpha-Pal/NRF-1 in the development of brain --------45 4-5 Alpha-Pal/NRF-1 may involve in neurogenesis in the adult brain during memory formation -----------------------------------------------------------46 4-6 Possible upstream signaling molecules of alpha-Pal/NRF-1 involve in the regulation of neuronal plasticity ------------------------------------------46 Chapter 5 Conclusion -------------------------------------------------------49 References -----------------------------------------------------------------50 Figures --------------------------------------------------------------------64 Appendix -------------------------------------------------------------------87 Publications ---------------------------------------------------------------93 作者簡歷 -------------------------------------------------------------------94

    Aiyar A., Xiang Y., Leis J., 1996. Site-directed mutagenesis by overlap extension. Methods Mol. Biol. 57, 177-191.
    Aniello F., Couchie D., Gripois D., Nunez J., 1991. Regulation of five tubulin isotypes by thyroid hormone during brain development. J. Neurochem. 57, 1781-1786.
    Arakawa Y., Bito H., Furuyashiki T., Tsuji T., Takemoto-Kimura S., Kimura K., Nozaki K., Hashimoto N., Narumiya S., 2003. Control of axon elongation via an SDF-1 alpha/Rho/mDia pathway in cultured cerebellar granule neurons. J. Cell Biol. 161, 381-391.
    Archer F. R., Doherty P., Collins D., Bolsover S. R., 1999. CAMs and FGF cause a local submembrane calcium signal promoting axon outgrowth without a rise in bulk calcium concentration. Eur. J. Neurosci. 11, 3565-3573.
    Azizkhan J. C., Jensen D. E., Pierce A. J., Wade M., 1993. Transcription from TATA-less promoters: dihydrofolate reductase as a model. Crit. Rev. Eukaryot. Gene Expr. 3, 229-254.
    Azoitei N., Wirth T., Baumann B., 2005. Activation of the IkappaB kinase complex is sufficient for neuronal differentiation of PC12 cells. J. Neurochem. 93, 1487-1501.
    Barger S. W., Moerman A. M., Mao X., 2005. Molecular mechanisms of cytokine-induced neuroprotection: NFkappaB and neuroplasticity. Curr. Pharm. Des. 11, 985-998.
    Battye R., Stevens A., Jacobs J. R., 1999. Axon repulsion from the midline of the Drosophila CNS requires slit function. Development 126, 2475-2481.
    Becker T. S., Burgess S. M., Amsterdam A. H., Allende M. L., Hopkins N., 1998. not really finished is crucial for development of the zebrafish outer retina and encodes a transcription factor highly homologous to human Nuclear Respiratory Factor-1 and avian Initiation Binding Repressor. Development 125, 4369-4378.
    Beebe S. J., 1994. The cAMP-dependent protein kinases and cAMP signal transduction. Semin. Cancer Biol. 5, 285-294.
    Belmadani A., Tran P. B., Ren D., Assimacopoulos S., Grove E. A., Miller R. J., 2005. The chemokine stromal cell-derived factor-1 regulates the migration of sensory neuron progenitors. J. Neurosci. 25, 3995-4003.
    Bökel C., Brown N. H., 2002. Integrins in development: moving on, responding to, and sticking to the extracellular matrix. Dev. Cell. 3, 311-321.
    Bozon B., Davis S., Laroche S., 2002. Regulated transcription of the immediate-early gene Zif268: mechanisms and gene dosage-dependent function in synaptic plasticity and memory formation. Hippocampus 12, 570-577.
    Bozon B., Davis S., Laroche S., 2003. A requirement for the immediate early gene zif268 in reconsolidation of recognition memory after retrieval. Neuron 40, 695-701.
    Brose K., Tessier-Lavigne M., 2000. Slit proteins: key regulators of axon guidance, axonal branching, and cell migration. Curr. Opin. Neurobiol. 10, 95-102.
    Brown A., Yates P. A., Burrola P., Ortuno D., Vaidya A., Jessell T. M., Pfaff S. L., O'Leary D. D., Lemke G., 2000. Topographic mapping from the retina to the midbrain is controlled by relative but not absolute levels of EphA receptor signaling. Cell 102, 77-88.
    Brown E., Hopper L., Ho T., Gresham H., 1990. Integrin-associated protein: a 50-KD plasma membrane antigen physically and functionally associated with integrins. J. Cell Biol. 111, 2785-2794.
    Brown E. J., Frazier W. A., 2001. Integrin-associated protein (CD47) and its ligands. Trends Cell Biol. 11, 130-135.
    Calzone F. J., Höög C., Teplow D. B., Cutting A. E., Zeller R. W., Britten R. J., Davidson E. H., 1991. Gene regulatory factors of the sea urchin embryo: I. Purification by affinity chromatography and cloning of P3A2, a novel DNA-binding protein. Development 112, 335-350.
    Carmeliet P., Ferreira V., Breier G., Pollefeyt S., Kieckens L., Gertsenstein M., Fahrig M., Vandenhoeck A., Harpal K., Eberhardt C., Declercq C., Pawling J., Moons L., Collen D., Risau W., Nagy A., 1996. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380, 435- 439.
    Chang H. P., Lindberg F. P., Wang H. L., Huang A. M., Lee E. H. Y., 1999. Impaired memory retention and decreased long-term potentiation in integrin-associated protein-deficient mice. Learn. Mem. 6, 448-457.
    Chang H. P., Ma Y. L., Wan F. J., Tsai L. Y., Lindberg F. P., Lee, E. H. Y., 2001. Functional blocking of integrin-associated protein impairs memory retention and decreases glutamate release from the hippocampus. Neuroscience 102, 289-296.
    Chang W. T., Chen H. I., Chiou R. J., Chen C. Y., Huang A. M., 2005. A novel finction of transcription factor alpha-Pal/NRF-1: Increasing neurite outgrowth. Biochem. Biophys. Res. Commun. 334, 199-206.
    Chang W. T., Huang A. M., 2004. Alpha-Pal/NRF-1 regulates the promoter of the human integrin-associated protein/CD47 gene. J. Biol. Chem. 279, 14542-14550.
    Chao M. V., 2000. Trophic factors: An evolutionary cul-de-sac or door into higher neuronal function? J. Neurosci. Res. 59, 353-355.
    Chiang M. Y., Misner D., Kempermann G., Schikorski T., Giguere V., Sucov H. M., Gage F. H., Stevens C. F., Evans R. M., 1998. An essential role for retinoid receptors RAR-beta and RXR-gamma in long-term potentiation and depression. Neuron 21, 1353-1361.
    Chin E. R., Olson E. N., Richardson J. A., Yang Q., Humphries C., Shelton J. M., Wu H., Zhu W., Bassel-Duby R., Williams R. S., 1998. A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes & Dev. 12, 2499-2509.
    Chin L.-S., Li L., Ferreira A., Kosik K. S., Greengard P., 1995. Impairment of axonal development and of synaptogenesis in hippocampal neurons of synapsin I-deficient mice. Proc. Natl. Acad. Sci. U. S. A. 92, 9230-9234.
    Chiou R.-J., 2004. Functional study of the transcription factor alpha-Pal/NRF-1 in neuronal plasticity. Thesis of Master degree. National Chung Kung University Medical College.
    Cho J. H., Kwon I. S., Kim S., Ghil S. H., Tsai M. J., Kim Y. S., Lee Y. D., Suh-Kim H., 2001. Overexpression of BETA2/NeuroD induces neurite outgrowth in F11 neuroblastoma cells. J. Neurochem. 77, 103-109.
    Chung J., Gao A.-G., Frazier, W. A., 1997. Thrombosopdin acts via integrin-associated protein to activate the platelet integrin alphaIIbbeta3. J. Biol. Chem. 272, 14740-14746.
    Cole A. J., Saffen D. W., Baraban J. M., Worley P.F., 1989. Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation. Nature 340, 474–476.
    Colombo P. J., 2004. Learning-induced activation of transcription factors among multiple memory systems. Neurobiol. Learn. Mem. 82, 268-277.
    Corcoran J., Shroot B., Pizzey J., Maden M., 2000. The role of retinoic acid receptors in neurite outgrowth from different populations of embryonic mouse dorsal root ganglia. J. Cell Sci. 113, 2567-2574.
    da Silva J. S., Dotti C. G., 2002. Breaking the neuronal sphere: regulation of the actin cytoskeleton in neuritogenesis. Nat. Rev. Neurosci. 3, 694-704.
    Davis S., Bozon B., Laroche S., 2003. How necessary is the activation of the immediate early gene zif268 in synaptic plasticity and learning? Behav. Brain Res. 142, 17-30.
    de Freitas M. S., Spohr T. C., Benedito A. B., Caetano M. S., Margulis B., Lopes U. G., Moura-Neto V., 2002. Neurite outgrowth is impaired on HSP70-positive astrocytes through a mechanism that requires NF-kappaB activation. Brain Res. 958, 359-370.
    Denver R. J., Ouellet L., Furling D., Kobayashi A., Fujii-Kuriyama Y., Puymirat J., 1999. Basic transcription element-binding protein (BTEB) is a thyroid hormone-regulated gene in the developing central nervous system. Evidence for a role in neurite outgrowth. J. Biol. Chem. 274, 23128-23134.
    DeSimone S. M., White K., 1993. The Drosophila erect wing gene, which is important for both neuronal and muscle development, encodes a protein which is similar to the sea urchin P3A2 DNA binding protein. Mol. Cell. Biol. 13, 3641-3649.
    Dichter M. A., 1978. Rat cortical neurons in cell culture: culture methods, cell morphology, electrophysiology, and synapse formation. Brain Res. 149, 279-293.
    Doherty P., Ashton S. V., Moore S. E. Walsh F. S., 1991. Morphoregulatory activities of NCAM and N-cadherin can be accounted for by G protein-dependent activation of L- and N-type neuronal Ca2+ channels. Cell 67, 21-33.
    Doherty P., Williams G., Williams E. J., 2000. CAMs and axonal growth: a critical evaluation of the role of calcium and the MAPK cascade. Mol. Cell Neurosci. 16, 283-295.
    Doyle E., Nolan P. M., Regan C. M., 1990. Learning-induced change in neural activity during acquisition and consolidation of a passive avoidance response in the rat. Neurochem. Res. 15, 551-558.
    Dudek H., Datta S. R., Franke T. F., Birnbaum M. J., Yao R., Cooper G. M., Segal R. A., Kaplan D. R., Greenberg M. E., 1997. Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 275, 661-665.
    Efiok B. J. S., Chiorini J. A., Safer B., 1994. A key transcription factor for eukaryotic initiation factor-2alpha is strongly homologous to developmental transcription factors and may link metabolic genes to cellular growth and development. J. Biol. Chem. 269, 18921-18930.
    Efiok B. J. S., Safer B., 2000. Transcriptional regulation of E2F-1 and eIF-2 genes by alpha-Pal: a potential mechanism for coordinated regulation of protein synthesis, growth, and the cell cycle. Biochim. Biophy. Acta 1495, 51-68.
    Encinas M., Tansey M. G., Tsui-Pierchala B. A., Comella J. X., Milbrandt J., Johnson Jr E. M., 2001. c-Src is required for glial cell line-derived neurotrophic factor (GDNF) family ligand-mediated neuronal survival via a phosphatidylinositol-3 kinase (PI-3K)-dependent pathway. J. Neurosci. 21, 1464-1472.
    Eustache F., Rioux P., Desgranges B., Marchal G., Petit-Taboue M. C., Dary M., Lechevalier B., Baron J. C., 1995. Healthy aging, memory subsystems and regional cerebral oxygen consumption. Neuropsychologia 33, 867-887.
    Evangelopoulos M. E., Weis J., Kruttgen A., 2005. Signalling pathways leading to neuroblastoma differentiation after serum withdrawal: HDL blocks neuroblastoma differentiation by inhibition of EGFR. Oncogene 24, 3309-3318.
    Evans M. J., Scarpulla R. C., 1989. Interaction of nuclear factors with multiple sites in the somatic cytochrome c promoter: characterization of upstream NRF-1, ATF and intron Sp1 recognition sequences. J. Biol. Chem. 264, 14361-14368.
    Evans M. J., Scarpulla R. C., 1990. NRF-1: a trans-activator of nuclear encoded respiratory genes in animal cells. Genes & Dev. 4, 1023-1034.
    Fazio I. K., Bolger T. A., Gill G., 2001. Conserved regions of the Drosophila erect wing protein contribute both positively and negatively to transcriptional activity. J. Biol. Chem. 276, 18710-18716.
    Faissner A. 1997. The tenascin gene family in axon growth and guidance. Cell Tissue Res. 290, 331-341.
    Faissner A., Götz B., Joester A., Wigger F., Scholze A., Schütte K., 1996. Tenascin-C glycoproteins in neural pattern formation and regeneration. Semin. Neurosci 8:347-356.
    Ferrara N., Alitalo K., 1999. Clinical applications of angiogenic growth factors and their inhibitors. Nat. Med. 5, 1359-1364.
    Ferrara N., Davis-Smyth T., 1997. The biology of vascular endothelial growth factor. Endocr. Rev. 18, 4-25.
    Fields R. D., 1994. Regulation of neurite outgrowth and immediate early gene expression by patterned electrical stimulation. Prog. Brain Res. 103, 127-136.
    Fukuda M., Gotoh Y., Tachibana T., Dell K., Hattori S., Yoneda Y., Nishida E., 1995. Induction of neurite outgrowth by MAP kinase in PC12 cells. Oncogene 11, 239-244.
    Gao A.-G., Lindberg F. P., Finn M. B., Blystone S. D., Brown E. J., Frazier W. A., 1996. Integrin-associated protein is a receptor for the C-terminal domain of thrombospondin. J. Biol. Chem. 271, 21-24.
    Gates M. A., Thomas B. L., Howard E. M., Laywell E. D., Sajin B., Faissner A., Götz B., Silver J., Steindler D. A., 1995. Cell and molecular analysis of the developing and adult mouse subventricular zone of the cerebral hemispheres. J. Comp. Neurol. 361, 249-266.
    Gómez-Cuadrado A., Martín M., Noël M., Ruiz-Carrillo A., 1995. Initiation binding receptor, a factor that binds to the transcription initiation site of the histone h5 gene, is a glycosylated member of a family of cell growth regulators. Mol. Cell Biol. 15, 6670-6685.
    Gopalakrishnan L. Scarpulla R. C., 1995. Structure, expression and chromosomal assignment of the human gene encoding nuclear respiratory factor 1. J. Biol. Chem. 270, 18019-18025.
    Götz M., Bolz J., Joester A., Faissner A., 1997. Tenascin-C synthesis and influence on axonal growth during rat cortical development. Eur. J. Neurosci. 9, 496-506.
    Gresham H. D., Goodwin J. L., Allen P. M., Anderson D. C., Brown E. J., 1989. A novel member of the integrin receptor family mediates Arg-Gly-Asp-stimulated neutrophil phagocytosis. J. Cell Biol. 108, 1935-1943.
    Han S. W., Greene M. E., Pitts J., Wada R. K., Sidell N., 2001a. Novel expression and function of peroxisome proliferator-activated receptor gamma (PPARgamma) in human neuroblastoma cells. Clin. Cancer Res. 7, 98-104.
    Han S., Wada R. K., Sidell N., 2001b. Differentiation of human neuroblastoma by phenylacetate is mediated by peroxisome proliferator-activated receptor gamma. Cancer Res. 61, 3998-4002.
    Hall A., 1998. Rho GTPases and the actin cytoskeleton. Science 279, 509-514.
    Hartman D. S, Hertel C., 1994. Nerve growth factor-induced differentiation in neuroblastoma cells expressing TrkA but lacking p75NGFR. J. Neurochem. 63, 1261-1270.
    Hilfiker S., Pieribone V. A., Czernik A. J., Kao H.-T., Augustine G. J., Greengard P., 1999. Synapsins as regulators of neurotransmitter release. Philos. Trans. R. Soc. Lond. B Biol. Sci. 354, 269-279.
    Huang A. M., Wang H. L., Tang Y. P., Lee E. H. Y., 1998. Expression of Integrin-associated protein gene associated with memory formation in rats. J. Neurosci. 18, 4305-4313.
    Huo L., Scarpulla R. C., 2001. Mitochondrial DNA instability and peri-implantation lethality associated with targeted disruption of nuclear respiratory factor 1 in mice. Mol. Cell Biol. 21, 644-654.
    Ingraham C. A., Cox M. E., Ward D. C., Fults D. W., Maness P. F., 1989. c-src and other proto-oncogenes implicated in neuronal differentiation. Mol. Chem. Neuropathol. 10, 1-14.
    Ip N. Y., Yancopoulos G. D., 1996. The neurotrophins and CNTF: two families of collaborative neurotrophic factors. Annu. Rev. Neurosci. 19, 491-515.
    Ivaska J, Heino J., 2000. Adhesion receptors and cell invasion: mechanisms of integrin-guided degradation of extracellular matrix. Cell. Mol. Life Sci. 57, 16-24.
    Ivins J. K., Yurchenco P. D., Lander A. D., 2000. Regulation of neurite outgrowth by integrin activation. J. Neurosci. 20, 6551-6560.
    Jacob W. F., Silverman T. A., Cohen R. B., Safer B., 1989. Identification and characterization of a novel transcription factor participating in the expression of eukaryotic initiation factor 2alpha. J. Biol. Chem. 264, 20372-20384.
    Jalink K., van Corven E. J., Hengeveld T., Morii N., Narumiya S., Moolenaar W. H., 1994. Inhibition of lysophosphatidate and thrombin-induced neurite retraction and neuronal cell rounding by ADP ribosylation of the small GTP-binding protein Rho. J. Cell Biol. 126, 801-810.
    Jessen U., Novitskaya V., Pedersen N., Serup P., Berezin V., Bock E., 2001. The transcription factors CREB and c-Fos play key roles in NCAM-mediated neuritogenesis in PC12-E2 cells. J. Neurochem. 79, 1149-1160.
    Jiang P., Lagenaur C. F., Narayanan V., 1999. Integrin-associated protein is a ligand for the P84 neural adhesion molecule. J. Biol. Chem. 274, 559-562.
    Joester A., Faissner A., 2001. The structure and function of tenascins in the nervous system. Matrix Biol. 20, 13-22.
    Johnson J. E., 1999. Neurotrophic factors. In: Ziigmond, M.J., Bloom, F. E., Landis, S. C., Roberts, J. L., Squire, L. R. (eds). Fundamental Neuroscience, pp. 611-635. San Diego: Academic Press.
    Jordan M., Schallhorn A., Wurm F. M., 1996. Transfecting mammalian cells: optimization of critical parameters affecting calcium-phosphate precipitate formation. Nucleic Acids Res. 24, 596-601.
    Keleman K., Dickson B. J., 2001. Short- and long-range repulsion by the Drosophila Unc5 netrin receptor. Neuron 32, 605-617.
    Kelly D. P, Scarpulla R. C., 2004. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes & Dev. 18, 357-368.
    Khaibullina A., Rosenstein J. M., Krum J. M., 2004. Vascular endothelial growth factor (VEGF) promotes neurite maturation in primary CNS neuronal cultures. Dev. Brain Res. 148, 59-68.
    Kidd T., Brose K., Mitchell K. J., Fetter R. D., Tessier-Lavigne M., Goodman C. S., Tear G., 1998. Roundabout controls axon crossing of the CNS midline and defines a novel subfamily of evolutionarily conserved guidance receptors. Cell 92, 205-215.
    Kiryushko D., Berezin V., Bock E., 2004. Regulators of neurite outgrowth: role of cell adhesion molecules. Ann. N. Y. Acad. Sci. 1014, 140-154.
    Kiselyov V. V., Skladchikova G., Hinsby A. M., Jensen P. H., Kulahin N., Soroka V., Pedersen N., Tsetlin V., Poulsen F. M., Berezin V., Bock E., 2003. Structural basis for a direct interaction between FGFR1 and NCAM and evidence for a regulatory role of ATP. Structure (Camb.) 11, 691-701.
    Kobayashi M., Taniura H., Yoshikawa K., 2002. Ectopic expression of necdin induces differentiation of mouse neuroblastoma cells. J. Biol. Chem. 277, 42128-42135.
    Kolkova K., Novitskaya V., Pedersen E. N., Berezin V., Bock E., 2000. Neural cell adhesion molecule-stimulated neurite outgrowth depends on activation of protein kinase C and the Ras-mitogen-activated protein kinase pathway. J. Neurosci. 20, 2238-2246.
    Kollmar R., Farnham P. J., 1993. Site-specific initiation of transcription by RNA polymerase II. Proc. Soc. Exp. Biol. Med. 203, 127-139.
    Kozma R., Sarner S., Ahmed S., Lim L., 1997. Rho family GTPases and neuronal growth cone remodelling: relationship between increased complexity induced by Cdc42Hs, Rac1, and acetylcholine and collapse induced by RhoA and lysophosphatidic acid. Mol. Cell Biol. 17, 1201-1211.
    Kumari D., Usdin K., 2001. Interaction of the Transcription Factors USF1, USF2, and alpha-Pal/Nrf-1 with the FMR1 Promoter. J Biol. Chem. 276, 4357-4364.
    Labelle C., Leclerc N., 2000. Exogenous BDNF, NT-3 and NT-4 differentially regulate neurite outgrowth in cultured hippocampal neurons. Brain Res. Dev. Brain Res. 123, 1-11.
    Larrivee B., Karsan A., 2000. Signaling pathways induced by vascular endothelial growth factor. Int. J. Mol. Med. 5, 447- 456.
    Leifer D., Golden J., Kowall N. W., 1994. Myocyte-specific enhancer binding factor 2C expression in human brain development. Neuroscience 63, 1067-1079.
    Leung-Hagesteijn C., Spence A. M, Stern B. D., Zhou Y., Su M. W., Hedgecock E. M., Culotti J. G., 1992. UNC-5, a transmembrane protein with immunoglobulin and thrombospondin type 1 domains, guides cell and pioneer axon migrations in C. elegans. Cell 71, 289-299.
    Lin J., Wu H., Tarr P. T., Zhang C. Y., Wu Z., Boss O., Michael L. F., Puigserver P., Isotani E., Olson E. N., Lowell B. B., Bassel-Duby R., Spiegelman B. M., 2002. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 418, 797-801.
    Lin X., Shah S., Bulleit R. F., 1996. The expression of MEF2 genes is implicated in CNS neuronal differentiation. Brain Res. Mol. Brain Res. 42, 307-316.
    Lindberg F. P., Gresham H. D., Schwarz E., Brown E. J., 1993. Molecular cloning of integrin-associated protein: an immunoglobulin family member with multiple membrane-spanning domains implicated in alphavbeta3-dependent ligand binding. J. Cell Biol. 123, 485-496.
    Lonze B. E., Ginty D. D., 2002. Function and regulation of CREB family transcription factors in the nervous system. Neuron 35, 605-623.
    Lowell B. B., Spiegelman B. M., 2000. Towards a molecular understanding of adaptive thermogenesis. Nature 404, 652-660.
    Lu B., Greengard P., Poo M.-M., 1992. Exogenous synapsin I promotes functional maturation of developing neuromuscular synapses. Neuron 8, 521-529.
    Maden M., Hind M., 2003. Retinoic acid, a regeneration-inducing molecule. Dev. Dyn. 226, 237-244.
    Manitt C., Kennedy T. E., 2002. Where the rubber meets the road: netrin expression function in developing and adult nervous systems. Prog. Brain Res. 137, 425-442.
    McEwen B., Akama K., Alves S., Brake W. G., Bulloch K., Lee S., Li C., Yuen G., Milner T. A., 2001. Tracking the estrogen receptor in neurons: implications for estrogen-induced synapse formation. Proc. Natl. Acad. Sci. U. S. A. 98, 7093-7100.
    McKay S. E., Purcell A. L., Carew T. J., 1999. Regulation of synaptic function by neurotrophic factors in vertebrates and invertebrates: implications for development and learning. Learn. Mem. 6, 193-215.
    Mendell L. M., Munson J. B., Arvanian V. L., 2001. Neurotrophins and synaptic plasticity in the mammalian spinal cord. J. Physiol. 533, 91-97.
    Messier C., Durkin T., Mrabet O., Destrade C., 1990. Memory-improving action of glucose: indirect evidence for a facilitation of hippocampal acetylcholine synthesis. Behav. Brain Res. 39, 135-143.
    Michael L. F., Wu Z., Cheatham R. B., Puigserver P., Adelmant G., Lehman J. J., Kelly D. P., Spiegelman B. M., 2001. Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. Proc. Natl. Acad. Sci. U. S. A. 98, 3820-3825.
    Miyamoto E., Kuo J. F., Greengard P., 1968. Adenosine 3′, 5′-monophosphate-dependent protein kinase from brain. Science 165, 63-65.
    Miyamoto E., Kuo J. F., Greengard P., 1969. Cyclic nucleotide-dependent protein kinases. 3. Purification and properties of adenosine 3′, 5′-monophosphate-dependent protein kinase from bovine brain. J. Biol. Chem. 244, 6395-6402.
    Miyata T., Maeda T., Lee J. E., 1999. NeuroD is required for differentiation of the granule cells in the cerebellum and hippocampus. Genes & Dev. 13, 1647-1652.
    Miyashita M., Ohnishi H., Okazawa H., Tomonaga H., Hayashi A., Fujimoto T.-T., Furuya N., Matozaki T., 2004. Promotion of neurite and filopodium formation by CD47: roles of integrins, Rac, and Cdc42. Mol. Biol. Cell 15, 3950-3963.
    Mi Z. P., Jiang P., Weng W. L., Lindberg F. P., Narayanan V., Lagenaur C. F., 2000. Expression of a synapse-associated membrane protein, P84/SHPS-1, and its ligand, IAP/CD47, in mouse retina. J. Comp. Neurol. 416, 335-344.
    Michael L. F., Wu Z., Cheatham R. B., Puigserver P., Adelmant G., Lehman J. J., Kelly D. P., Spiegelman B. M., 2001. Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. Proc. Natl. Acad. Sci. U. S. A. 98, 3820-3825.
    Mizuno M., Yamada K., Maekawa N., Saito K., Seishima M., Nabeshima T., 2002. CREB phosphorylation as a molecular marker of memory processing in the hippocampus for spatial learning. Behav. Brain Res. 133,135-141.
    Myers S. J., Peters J., Huang Y., Comer M. B., Barthel F., Dingledine R., 1998. Transcriptional regulation of the GluR2 gene: Neural-specific expression, multiple promoters, and regulatory elements. J. Neurosci. 18, 6723-6739.
    Nishiki T., Narumiya S., Morii N., Yamamoto M., Fujiwara M., Kamata Y., Sakaguchi G., Kozaki S., 1990. ADP-ribosylation of the rho/rac proteins induces growth inhibition, neurite outgrowth and acetylcholine esterase in cultured PC12 cells. Biochem. Biophys. Res. Commun. 167, 265-272.
    Numakawa T., Ishimoto T., Suzuki S., Numakawa Y., Adachi N., Matsumoto T., Yokomaku D., Koshimizu H., Fujimori K. E., Hashimoto R., Taguchi T., Kunugi, H., 2004. Neuronal roles of the integrin-associated protein (IAP/CD47) in developing cortical neurons. J. Biol. Chem. 279, 43245-43253.
    Nunez J., Couchie D., Aniello F., Bridoux A. M., 1991. Regulation by thyroid hormone of microtubule assembly and neuronal differentiation. Neurochem. Res. 6, 975-982.
    Oldenborg P.-A., Zheleznyak A., Fang Y.-F., Lagenaur C. F., Gresham H. D., Lindberg F. P., 2000. Role of CD47 as a marker of self on red blood cells. Science 288, 2051-2054.
    Ohnishi H., Kaneko Y., Okazawa H., Miyashita M., Sato R., Hayashi A., Tada K., Nagata S., Takahashi M., Matozaki T., 2005. Differential localization of Src homology 2 domain-containing protein tyrosine phosphatase substrate-1 and CD47 and its molecular mechanisms in cultured hippocampal neurons. J. Neurosci. 25, 2702-2711.
    Pang L., Sawada T., Decker S. J., Saltiel A. R., 1995. Inhibition of MAP kinase kinase blocks the differentiation of PC-12 cells induced by nerve growth factor. J. Biol. Chem. 270, 13585-13588.
    Parkos C. A., Colgan S. P., Liang T. W., Nusrat A., Bacarra A. E., Carnes D. K., Madara. J. L., 1996. CD47 mediated post-adhesive events required for neutrophil migration across polarized intestinal epithelia. J. Cell Biol. 132, 437-450.
    Perron J. C., Bixby J. L., 1999. Distinct neurite utgrowth signaling pathways converge on ERK activation. Mol. Cell Neurosci. 13, 362-378.
    Pignatelli M., Cortes-Canteli M., Santos A., Perez-Castillo A., 1999. Involvement of the NGFI-A gene in the differentiation of neuroblastoma cells. FEBS Lett. 461, 37-42.
    Puigserver P., Wu Z., Park C. W., Graves R., Wright M., Spiegelman B. M., 1998. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829-839.
    Pujol F., Kitabgi P., Boudin H., 2005. The chemokine SDF-1 differentially regulates axonal elongation and branching in hippocampal neurons. J. Cell Sci. 118, 1071-1080.
    Qiu M.-S., Green S. H., 1992. PC12 cell neuronal differentiation is associated with prolonged p21ras activity and consequent prolonged ERK activity. Neuron 9, 705-717.
    Rauvala H., Peng, H. B., 1997. HB-GAM (heparin-binding growth-associated molecule) and heparin-type glycans in the development and plasticity of neuron-target contacts. Prog. Neurobiol. 52, 127-144.
    Reimann E. M., Walsh D. A., Krebs E.G., 1971. Purification and properties of rabbit skeletal muscle adenosine 3′,5′-monophosphate-dependent protein kinases. J. Biol. Chem. 246, 1986-1995.
    Reinhold M. I., Lindberg F. P., Plas D., Reynolds S., Peters M. G., Brown E. J., 1995. In vivo exoression of alternatively spliced forms of integrin-associated protein (CD47). J. Cell Sci. 108, 3419-3425.
    Ronn L. C., Dissing S., Holm A., Berezin V., Bock E., 2002. Increased intracellular calcium is required for neurite outgrowth induced by a synthetic peptide ligand of NCAM. FEBS Lett. 518, 60-66.
    Rosenstein J. M., Mani N., Khabullina A., Krum J. M., 2003. Neurotrophic effects of vascular endothelial growth factor on organotypic cortical explants and primary cortical. Neurons. J. Neurosci. 23, 11036-11044.
    Sapede D., Rossel M., Dambly-Chaudiere C., Ghysen A., 2005. Role of SDF1 chemokine in the development of lateral line efferent and facial motor neurons. Proc. Natl. Acad. Sci. U. S. A. 102, 1714-1718.
    Sastry S. K., Horwitz A. F., 1993. Integrin cytoplasmic domains: mediators of cytoskeletal linkages and extra- and intracellular initiated transmembrane signaling. Curr. Opin. Cell Biol. 5, 819-831.
    Saunders D. E., Zajac C. S., Wappler N. L., 1995. Alcohol inhibits Neurite extension and increases N-myc and c-myc proteins. Alcohol 12, 475-483.
    Szabat E., Rauvala H., 1996. Role of HB-GAM (heparin-binding growth-associated molecule) in proliferation arrest in cells of the developing rat limb and its expression in the differentiating neuromuscular system. Dev. Biol. 178, 77-89.
    Schickel J., Stahn K., Zimmer K.-P., Sudbrak R., Størm T. M., Dürst M., Kiehntopf M., Deufel T., 2002. Gene for integrin-associated protein (IAP, CD47): Physical mapping, genomic structure, and expression studies in skeletal muscle. Biochem. Cell Biol. 80, 169-176.
    Schmid R. S., Graff R. D., Schaller M. D., Chen S., Schachner M., Hemperly J. J., Maness P. F., 1999. NCAM stimulates the Ras-MAPK pathway and CREB phosphorylation in neuronal cells. Neurobiology 38, 542-558.
    Schmid R. S., Pruitt W. M., Maness P. F., 2000. A MAP kinase-signaling pathway mediates neurite outgrowth on L1 and requires Src-dependent endocytosis. J. Neurosci. 20, 4177-4188.
    Schmidt A., Vogel R., Holloway M. K., Rutledge S. J., Friedman O., Yang Z., Rodan G. A., Friedman E., 1999. Transcription control and neuronal differentiation by agents that activate the LXR nuclear receptor family. Mol. Cell. Endocrinol. 155, 51-60.
    Schoenwaelder S. M., Yuan Y., Cooray P., Salem H. H., Jackson S. P., 1997. Calpain cleavage of focal adhesion proteins regulates the cytoskeletal attachment of integrin alphaIIbbeta3 (platelet glycoprotein IIb/IIIa) and the cellular retraction of fibrin clots. J. Biol. Chem. 272, 1694-1702.
    Seeger M., Tear G., Ferres-Marco D., Goodman C. S., 1993. Mutations affecting growth cone guidance in Drosophila: genes necessary for guidance toward or away from the midline. Neuron 1993, 10, 409-426.
    Segal R. A, Greenberg M. E., 1996. Intracellular signaling pathways activated by neurotrophic factors. Annu. Rev. Neurosci. 19, 463-489.
    Senior R. M., Gresham H. D., Griffin G. L., Brown E. J., Chung A. E., 1992. Entacin stimulates neutrophil adhesion and Chemotaxis through interactions between its Arg-Gly-Asp (RGD) domain and the leukocyte response integrin. J. Clin. Invest. 90, 2251-2257.
    Shahein Y. E. A., de Andrés D. F., and Pérez de la Lastra J. M., 2002. Molecular cloning and functional characterization of the pig homologue of integrin-associated protein (IAP/CD47). Immunology 106, 564-576.
    Sif J., Messier C., Meunier M., Bontempi B., Calas A., Destrade C., 1991. Time-dependent sequential increases in [14C]2-deoxyglucose uptake in subcortical and cortical structures during memory consolidation of an operant training in mice. Behav. Neural. Biol. 56, 43-61.
    Shors T. J., 2004. Memory traces of trace memories: neurogenesis, synaptogenesis and awareness. Trends Neurosci. 27, 250-256.
    Sole C., Dolcet X., Segura M. F., Gutierrez H., Diaz-Meco M. T., Gozzelino R., Sanchis D., Bayascas J. R., Gallego C., Moscat J., Davies A. M., Comella J. X., 2004. The death receptor antagonist FAIM promotes neurite outgrowth by a mechanism that depends on ERK and NF-kappa B signaling. J. Cell Biol. 167, 479-492.
    Sokolov E. N., Nezlina N. I., 2004. Long-term memory, neurogenesis, and signal novelty. Neurosci. Behav. Physiol. 34, 847-857.
    Sondell M., Lundborg G., Kanje M., 1999. Vascular endothelial growth factor has neurotrophic activity and stimulates axonal outgrowth, enhancing cell survival and Schwann cell proliferation in the peripheral nervous system. J. Neurosci. 19, 5731-5740.
    Song H.-J., Poo M.-M., 2001. The cell biology of neuronal navigation. Nat. Cell Biol. 3, E81–E88.
    Steindler D. A., 1993. Glial boundaries in the developing nervous system. Annu. Rev. Neurosci. 16, 445-470.
    Stumm R. K., Zhou C., Ara T., Lazarini F., Dubois-Dalcq M., Nagasawa T., Hollt V., Schulz S., 2003. CXCR4 regulates interneuron migration in the developing neocortex. J. Neurosci. 23, 5123-5130.
    Sutherland E. W., Rall T. W., 1957. The properties of an adenine ribonucleotide produced with cellular particles, ATP, Mg, and epinephrine or glucagons. J. Am. Chem. Soc. 79, 3608.
    Suyama K., Shapipo I., Guttman M. Hazan R., 2002. A signaling pathway leading to metastasis is controlled by N-cadherin and the FGF receptor. Cancer Cell 2, 301-314.
    Taylor J., Pesheva P., Schachner M., 1993. The influence of janusin and tenascin on growth cone behaviour in vitro. J. Neurosci. Res. 35, 347-362.
    Tessier-Lavigne M., Goodman C. S., 1996. The molecular biology of axon guidance. Science 274, 1123-1133.
    Ticchioni M., Deckert M., Mary F., Bernard G., Brown E. J., Bernard A., 1997. Integrin-associated protein (CD47) is a comitogenic molecule on CD3-activated human T cells. J. Immunol. 158, 677-684.
    Tigyi G., Fischer D. J., Sebok A., Yang C., Dyer D. L., Miledi R., 1996. Lysophosphatidic acid-induced neurite retraction in PC12 cells: control by phosphoinositide-Ca2+ signaling and Rho. J. Neurochem. 66, 537-547.
    Tojima T., Kobayashi S., Ito E., 2003. Dual role of cyclic AMP-dependent protein kinase in neuritogenesis and synaptogenesis during neuronal differentiation. J. Neurosci. Res. 74, 829-837.
    Töröcsik B., Angelastro J. M., Greene L. A., 2002. The basic region and leucine zipper transcription factor MafK is a new nerve growth factor-responsive immediate early gene that regulates neurite outgrowth. J. Neurosci. 22, 8971-8980.
    Tritos N. A., Mastaitis J. W., Kokkotou E. G., Puigserver P., Spiegelman B. M., Maratos-Flier E., 2003. Characterization of the peroxisome proliferator activated receptor coactivator 1 alpha (PGC 1 alpha) expression in the murine brain. Brain Res. 961, 255-260.
    Tronel S., Sara S. J., 2002. Mapping of olfactory memory circuits: region-specific c-fos activation after odor-reward associative learning or after its retrieval. Learn. Mem. 9, 105-111.
    Tucker K. L., Meyer M., Barde Y. A., 2001. Neurotrophins are required for nerve growth during development. Nature Neurosci. 4, 29-37.
    Turner R., 2002. Muscle regulator goes the distance. Nature 418, 740.
    Tyler W. J., Alonso M., Bramham C. R., Pozzo-Miller L. D., 2002. From acquisition to consolidation: on the role of brain-derived neurotrophic factor signaling in hippocampal-dependent learning. Learn. Mem. 9, 224-237.
    Uittenbogaard M., Chiaramello A., 2004. Expression profiling upon Nex1/MATH-2-mediated neuritogenesis in PC12 cells and its implication in regeneration. J. Neurochem. 91, 1332-1343.
    Viola H., Furman M., Izquierdo L. A., Alonso M., Barros D. M., de Souza M. M., Izquierdo I., Medina J. H., 2000. Phosphorylated cAMP response element-binding protein as a molecular marker of memory processing in rat hippocampus: effect of novelty. J. Neurosci. 20, RC112.
    Virbasius C. A., Virbasius J. V., Scarpulla R. C., 1993. NRF-1, an activator involved in nuclear-mitochondrial interactions, utilizes a new DNA-binding domain conserved in a family of developmental regulators. Genes & Dev. 7, 2431-2445.
    Waclavicek M., Majdic O., Stulnig T., Berger M., Baumruker T., Knapp W., Pickl W. F., 1997. T cell stimulation via CD47: Agonistic and antagonistic effects of CD 47 monoclonal antibody 1/1A4. J. Immunol. 159, 5345-5354.
    Walsh D. A., Perkins J. P., Krebs E. G., 1968. An adenosine 3',5'-monophosphate-dependant protein kinase from rabbit skeletal muscle. J. Biol. Chem. 243, 3763-3765.
    Wang K. H., Brose K., Arnott D., Kidd T., Goodman C. S., Henzel W., Tessier-Lavigne M., 1999. Biochemical purification of a mammalian slit protein as a positive regulator of sensory axon elongation and branching. Cell 96, 771-784.
    Wang X.-Q., Frazier W. A., 1998. The thrombospondin receptor CD47 (IAP) modulates and associates with alpha2beta1 integrin in vascular smooth muscle cells. Mol. Biol. Cell 9, 865-874.
    Wegner S. A., Ehrenberg P. K., Chang G., Dayhoff D. E., Sleeker A. L., Michael N. L., 1998. Genomic organization and functional characterization of the chemokine receptor CXCR4, a major entry co-receptor for human immunodeficiency virus type 1. J. Biol. Chem. 273, 4754-4760.
    Wittmann T., Waterman-Storer C. M., 2001. Cell motility: can Rho GTPases and microtubules point the way? J. Cell Sci. 114, 3795-3803.
    Wu Z., Puigserver P., Andersson U., Zhang C., Adelmant G., Mootha V., Troy A., Cinti S., Lowell B., Scarpulla R. C., Spiegelman B. M., 1999. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98, 115-124.
    Zetterstrom, R. H., Lindqvist, E., de Urquiza, A. M., Tomac, A., Eriksson, U., Perlmann, T., Olson, L., 1999. Role of retinoids in the CNS: differential expression of retinoid binding proteins and receptors and evidence for presence of retinoic acid. Eur. J. Neurosci. 11, 407-416.
    Zhu Y., Yu T., Zhang X.-C., Nagasawa T., Wu J. Y., Rao Y., 2002. Role of the chemokine SDF-1 as the meningeal attractant for embryonic cerebellar neurons. Nat. Neurosci. 5, 719-720.
    Zou Y.-R., Kottmann A. H., Kuroda M., Taniuchi I., Littman D. R., 1998. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393, 595-599.

    下載圖示 校內:立即公開
    校外:2005-07-27公開
    QR CODE