簡易檢索 / 詳目顯示

研究生: 馬立凱
Linda Mkhazimulise Masina
論文名稱: 整合力學-經驗設計方法與鋪面績效保固合約之分析架構 - 國道1號林口整修工程
Analysis Framework for Integration of Mechanistic-Empirical Design Approach and Performance Based Contracts – A Case Study of the National Freeway 1 Linkou Rehabilitation Project
指導教授: 楊士賢
Yang, Shih-Hsien
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 142
外文關鍵詞: Performance-Based Contract, Mechanistic-Empirical Design, NCHRP-137A, Cost-Effectiveness, Area Over the Curve
相關次數: 點閱:69下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The procurement of road infrastructure maintenance and management through Performance-Based Contracting (PBC) is becoming the outsourcing model for most transportation agencies worldwide. This trend is underscored by multilateral infrastructure funding institutions such as the World Bank and Asian Development Bank. Several studies have indicated that the institutional and user benefits gained from progression towards a PBC are significant. These include agency cost savings and improved road conditions. Developing proper performance standards or key performance indicators (KPI) and optimal thresholds is vital in a PBC framework. However, this has proven to be a challenge with this contracting method among road agencies. Therefore, the study utilized the mechanical-empirical pavement performance model to develop a framework to investigate the critical performance indicator specification of PBCs. The study used the Linkou rehabilitation project of National Freeway No.1 as a case study for the necessary model and cost analysis inputs. For the M-E analysis, the study adopted the MEPDG methodology established under the NCHRP Project 1-37A to simulate the pavement performance. The performance and cost-effectiveness (CE) of various maintenance and rehabilitation (M&R) strategies under different performance criteria (rutting, cracking, and IRI) and various thresholds were analyzed. The cost-effectiveness ratio of each scenario was calculated based on the area over the performance curve (AOC) and agency and user costs.
    Keywords: Performance-Based Contract, Mechanistic-Empirical Design, NCHRP-137A, Cost-Effectiveness, Area Over the Curve

    ABSTRACT I DEDICATION II ACKNOWLEDGEMENTS III TABLE OF CONTENTS IV LIST OF TABLES VI LIST OF FIGURES IX 1 CHAPTER ONE INTRODUCTION 1 1.1 Background 1 1.2 Objectives 3 1.3 Thesis Limitation and Scope 4 1.4 Organization of Thesis 4 2 CHAPTER TWO LITERATURE REVIEW 6 2.1 Performance-Based Contracting (PBC) 6 2.1.1 Pavement Performance Indexes 7 2.1.2 Maintenance Thresholds 8 2.2 ME Analysis 9 2.2.1 MEPDG Hierarchical Input Approach 11 2.2.2 Flexible Pavement Structural Response Modeling 15 2.2.3 Asphalt Concrete Dynamic Modulus Predictive Models 17 2.2.4 Pavement Performance Prediction Models 23 3 CHAPTER THREE RESEARCH METHODOLOGY 36 3.1 Research Framework 36 3.2 M&R Strategy 38 3.3 Performance Criteria and Threshold 39 3.4 Life Cycle Cost Analysis 40 3.4.1 Agency Costs 40 3.4.2 User Delay Costs 42 3.4.3 Effectiveness Analysis 43 3.4.4 Cost-Effectiveness Analysis (CEA) 45 4 CHAPTER FOUR CASE STUDY PROJECT DATA INPUT 46 4.1 Traffic Data Input 46 4.1.1 Electronic Toll Collection System (ETC) 46 4.1.2 Annual Average Daily Truck Traffic (AADTT) 48 4.1.3 Lane Distribution Factor 49 4.1.4 Monthly Adjustment Factor 50 4.1.5 Vehicle Class & Distribution - Correlation of ETC Data with FHWA Scheme 51 4.1.6 Axle Load Spectra 55 4.2 Climate Data Input 57 4.3 Pavement Structural Configuration 59 4.4 Material Characterization 60 4.4.1 Field and JMF Mix Performance Test Results (Laboratory) 61 4.4.2 Field and Virtual Mixtures 61 4.5 Summary of MEPDG Input Data Levels (Data Source) 64 5 CHAPTER FIVE M-E PERFORMANCE MODELLING RESULTS 67 5.1 AC Rutting Performance 67 5.1.1 Effect of AC Mix 67 5.1.2 Effect of Overlay Thickness 69 5.2 Total Cracking (Reflection + Bottom-Up Cracking) Performance 71 5.2.1 Effect of AC Mix 71 5.2.2 Effect of Overlay Thickness 72 5.3 Top-Down Cracking Performance 73 5.3.1 Effect of AC Mix 73 5.3.2 Effect of Overlay Thickness 75 5.4 IRI Performance 77 6 CHAPTER SIX REHABILITATION STRATEGIES COST-EFFECTIVENESS 80 6.1 Performance Effectiveness 80 6.1.1 Rutting Performance Effectiveness 80 6.1.2 Total Cracking Performance Effectiveness 81 6.1.3 Top-Down Cracking Performance Effectiveness 84 6.1.4 IRI Effectiveness 93 6.2 Cost-Effectiveness 94 6.2.1 Agency Cost 94 6.2.2 User Delay Cost 102 6.2.3 Total Cost 112 6.2.4 EC Index Summary 120 7 CHAPTER SEVEN CONCLUSION ANS RECOMMENDATION 125 7.1 Conclusion 125 7.2 Recommendation 127 8 REFERENCES 128 9 APPENDICES 143 9.1 Appendix 1: Cost Analysis Summary – Top-Down Cracking 143

    AASHTO. (1993). AASHTO Guide for Design of Pavement Structures. American Association of State Highway and Transportation Officials, Washington, D.C.
    AASHTO. (2008). Mechanistic-Empirical Pavement Design Guide -First edition. In American Association of State Highway and Transportation Officials, Washington, DC. (Issue Interim edition).
    AASHTO. (2013). AASHTO Transportation Asset Management Guide—A Focus on Implementation.
    AASHTO. (2016). Determining the Fracture Potential of Asphalt Mixtures Using the Illinois Flexibility Index Test (I-FIT). In Illinois Department of Transportation.
    AASHTO. (2017). Standard Method of Test for Hamburg Wheel-Track Testing of Compacted Asphalt Mixtures (Vol. 3, Issue August).
    AASHTO. (2020). Mechanistic-Empirical Pavement Design Guide: A Manual of Practice. American Association of State Highway and Transportation Officials, Washington, DC., August, 200.
    ABAQUS, Inc. (2005). ABAQUS, Standard User’s Manual, Version 6.5. Hibbit, Karlsson & Sorensen, Inc., Pawtucket, R.I.,.
    Abdelaziz, N., Abd El-Hakim, R. T., El-Badawy, S. M., & Afify, H. A. (2020). International Roughness Index prediction model for flexible pavements. International Journal of Pavement Engineering, 21(1), 88–99. https://doi.org/10.1080/10298436.2018.1441414
    Abdullah, A. Q. (2015). Development Of A Simplified Flexible Pavement Design Protocol For New York State Department Of Transportation Based On AASHTO ME Pavement Design Guide.
    Abdullah, A., Romanoschi, S. A., Bendana, L. J., & Nyamuhokya, T. (2014). Simple design procedure for new flexible pavement structures based on mechanistic-empirical pavement design guide. In Transportation Research Record (Vol. 2456, pp. 124–132). National Research Council. https://doi.org/10.3141/2456-13
    Ahlborn, G. (1972). ELSYM5 (Computer Program for Determining Stresses and Strains in Five Layer System). University of California, Berkeley.
    Al-Khateeb, G., Shenoy, A., Gibson, N., & Harman, T. (2006). A New Simplistic Model for Dynamic Modulus Predictions of Asphalt Paving Mixtures. Association of Asphalt Paving Technologists Annual Meeting. Paper Preprint CD., 75(October 2017).
    Andrei, D., Witczak, M. W., & M.W, M. (1999). Development of a revised predictive model for the dynamic (complex) modulus of asphalt mixture. Inter Team Technical Rep. No. NCHRP 1-37A Project. College Park, MD: Univ. of Maryland.
    ARA. (2004). Guide for Mechanistic-Empirical Design Guide of New and Rehabilitated Pavement Structures.
    Arefin, M. S., Quasem, T., Nazzal, M., Dessouky, S., & Abbas, A. R. (2019). Accuracy of MEPDG Dynamic Modulus Predictions for Short-Term and Long-Term Aged Asphalt Mixtures. Journal of Transportation Engineering, Part B: Pavements, 145(3), 04019025. https://doi.org/10.1061/JPEODX.0000125
    Asphalt Institute. (1981). Thickness Design Manual (MS-1), 9th ed. In The Asphalt Institute, College Park, MD.
    Asphalt Institute. (1991). Asphalt Pavement Thickness Design. 1–104.
    ASTM. (2009). Standard viscosity-temperature chart for asphalts. ASTM D2493/D2493M. West Conshohocken, PA: ASTM.
    ASTM. (2011). Standard Test Method for Indirect Tensile ( IDT ) Strength of Bituminous Mixtures. https://doi.org/10.1520/D6931-17.2
    ASTM D5340-12. (2012). Standard Test Method for Airport Pavement Condition Index Surveys. ASTM International, West Conshohocken, PA. www.astm.org/
    Baladi, G., Dawson, T., Musunuru, G., Prohaska, M., & Kyle, T. (2017). Pavement Performance Measures and Forecasting and the Effects of Maintenance and Rehabilitation Strategy on Treatment Effectiveness (Revised). Fhwa-Hrt-17-095, September, 1–329. https://www.fhwa.dot.gov/publications/research/infrastructure/pavements/ltpp/17095/17095.pdf
    Bari, J., & Witczak, M. W. (2006). Development of a new revised version of the Witczak E Predictive Model for hot mix asphalt mixtures. Asphalt Paving Technology: Association of Asphalt Paving Technologists-Proceedings of the Technical Sessions, 75(January 2006), 381–424.
    Bari, J., & Witczak, M. W. (2007). New predictive models for viscosity and complex shear modulus of asphalt binders: for use with mechanistic-empirical pavement design guide. Transportation Research Record, 2001, 9–19. https://doi.org/10.3141/2001-02
    Bonnaure, F., Gravois, A., & Udron, J. (1980). A New Method of Predicting the Fatigue Life of Bituminous Mixes. Journal of the Association of Asphalt Paving Technologists., Vol. 49, 499–529.
    Burmister, D. M., Palmer, L. A., Barber, E. S., & Middlebrooks, T. A. (1944). Theory of Stresses and Displacements in Layered Systems and Applications to the Design of Airport Runways. Highway Research Board Proceedings, 23.
    Chen, D., Hildreth, J., & Mastin, N. (2019). Determination of IRI Limits and Thresholds for Flexible Pavements. Journal of Transportation Engineering, Part B: Pavements, 145(2), 04019013. https://doi.org/10.1061/jpeodx.0000113
    Chen, J.-S., Lin, C.-H., Stein, ; Erwin, & Rgen Hothan, J. (2004). Development of a Mechanistic-Empirical Model to Characterize Rutting in Flexible Pavements. Journal of Transportation Engineering, 130. https://doi.org/10.1061/ASCE0733-947X2004130:4519
    Chen, S., Lai, R., Chen, Y., & Xu, Q. (2020). The Analysis and Application of WIM Data collected through the Ganshan Section of National Highway. 2020 International Conference on Sustainable and Innovative Infrastructure (ICSII).
    Chen, X., Zhu, H., Dong, Q., & Huang, B. (2017). Optimal thresholds for pavement preventive maintenance treatments using LTPP data. Journal of Transportation Engineering, 143(6), 1–9. https://doi.org/10.1061/JTEPBS.0000044
    Christensen, D. W., Pellinen, T., & Bonaquist, R. (2003). HIRSCH MODEL FOR ESTIMATING THE MODULUS OF ASPHALT CONCRETE. Asphalt Paving Technology: Association of Asphalt Paving Technologists-Proceedings of the Technical Sessions 72:97-121.
    Chu, J. C., & Chen, Y. J. (2012). Optimal threshold-based network-level transportation infrastructure life-cycle management with heterogeneous maintenance actions. Transportation Research Part B: Methodological, 46(9), 1123–1143. https://doi.org/10.1016/j.trb.2012.05.002
    Claessen, A. I. M., Edwards, J. M., Sommer, P., & Uge, P. (1977). No Title. Asphalt Pavement Design, The Shell Method, Proceedings of the 4rd International Conference on the Structural Design of Asphalt Pavements, Vol. I, Ann Arbor, MI, 39–74.
    de Jong, D. L., Peutz, M. G. F., & Korswagen, A. R. (1973). Computer Program BISAR. Layered Systems Under Normal and Tangential Surface Loads. In Koninklijke/Shell Laboratorium, External Report AMSR.0006.73, Amsterdam, The Netherlands.
    Dorman, G. M., & Metcalf, C. T. (1965). Design Curves for Flexible Pavements Based on Layered System Theory. Highway Research Record No. 71, 69–84.
    Elkins, G. E., Rada, G. R., Groeger, J. L., & Visintine, B. (2013). Pavement Remaining Service Interval Implementation Guidelines. US Department of Transporation Feferal Highway Administration, november, 1–62.
    Epps, J. A., Hand, A., Seeds, S., Scholz, T., Alavi, S., Ashmore, C., Monismith, C. L., Deacon, J. A., Harvey, J. T., & Leahy, R. B. (2002). “Recommended Performance-Related Specifications for Hot-Mix Asphalt Construction. In NCHRP Report 455, National Cooperative Highway Research Program, Transportation Research Board, National Research Council, Washington, D.C.
    FETC. (2016). Taiwan ETC System – Multi Lane Free Flow Gantry. https://en.smartcity.org.tw/index.php/en-us/component/k2/item/37-far-eastern-electronic-toll-collection
    FHWA. (2014). Introduction to Vehicle Classification - Verification, Refinement, and Applicability of Long-Term Pavement Performance Vehicle Classification Rules , November 2014 - FHWA-HRT-13-091. FHWA-HRT-13-091. https://www.fhwa.dot.gov/publications/research/infrastructure/pavements/ltpp/13091/002.cfm
    FHWA. (2015). Collectionof The LTPP Data - The Long-Term Pavement Performance Program. FHWA-HRT-15-049. https://www.fhwa.dot.gov/publications/research/infrastructure/pavements/ltpp/15049/007.cfm
    Frost, M. R., & Lithgow, C. M. (1998). Future trends in performance based contracting-legal and technical perspectives.
    George, K. P. (2000). MDOT Pavement Management System : Prediction Models and Feedback System. FHWA/MS-DOT-RD-00-119, October.
    Ghadimi, B., Nikraz, H., Leek, C., & Nega, A. (2013). A comparison between effects of linear and non-linear mechanistic behaviour of materials on the layered flexible pavement response. Advanced Materials Research, 723(November 2019), 12–21. https://doi.org/10.4028/www.scientific.net/AMR.723.12
    Gharieb, M., & Nishikawa, T. (2021). Development of Roughness Prediction Models for Laos National Road Network. CivilEng, 2(1), 158–173. https://doi.org/10.3390/civileng2010009
    Google Maps. (2021). Taiwan Freeway No. 1 - Linkou Section. https://www.google.com/maps/@25.0653509,121.3704175,3a
    Grande, G., Wood, S., Ominski, A., & Regehr, J. D. (2017). Evaluating Annual Average Daily Traffic Calculation Methods with Continuous Truck Traffic Data. Transportation Research Record: Journal of the Transportation Research, 2644, 30–38. https://doi.org/10.3141/2644-04
    Gupta, D., Vedantam, A., & Azadivar, J. (2011). Optimal Contract Mechanism Design for Performance-Based Contracts. August.
    Hadi, M. N. S., & Bodhinayake, B. C. (2003). Non-linear finite element analysis of flexible pavements. Advances in Engineering Software, 34(11–12), 657–662. https://doi.org/10.1016/S0965-9978(03)00109-1
    Harichandran, R. S., Yeh, M., & Baladi, G. Y. (1990). MICH-PAVE: A Nonlinear Finite Element Program for Analysis of Flexible Pavements. Transportation Research Record 1286, Transportation Research Board, Washington, DC, 1.
    Harvey, J., Signore, J., Wu, R., Basheer, I., Holikatti, S., Vacura, P., & Holland, T. J. (2014). Integration of Mechanistic-Empirical design and performance based specifications: California experience to date. Asphalt Pavements - Proceedings of the International Conference on Asphalt Pavements, ISAP 2014, 2, 1861–1870. https://doi.org/10.1201/B17219-224
    Hoyos, J. M. (2016). A Methodology to Determine Non-Fixed Performance Based Thresholds for Infrastructure Rehabilitation Scheduling. Open Access Dissertations. https://docs.lib.purdue.edu/open_access_dissertations/1262
    Huang, Y. H. (1993). Pavement analysis and design. In Prentice-Hall Inc., New Jersey, USA. Prentice-Hall Inc., New Jersey, USA.
    Huang, Y. H. (2004). Pavement analysis and design. In Pearson Prentice Hall, Pearson Education Inc., USA.
    Irfan, M., Bilal Khurshid, M., Labi, S., & Flora, W. (2009). Evaluating the cost effectiveness of flexible rehabilitation treatments using different performance criteria. Journal of Transportation Engineering, 135(10), 753–763. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000041
    Jannat, G., & Tighe, S. L. (2016). An experimental design-based evaluation of sensitivities of MEPDG prediction: Investigating main and interaction effects. International Journal of Pavement Engineering, 17(7), 615–625. https://doi.org/10.1080/10298436.2015.1007238
    Jessberger, S., Krile, R., Schroeder, J., Todt, F., & Feng, J. (2016). Improved annual average daily traffic estimation processes. Transportation Research Record, 2593, 103–109. https://doi.org/10.3141/2593-13
    Kasperick, T., & Ksaibati, K. (2015a). Calibration of the Mechanistic-Empirical Pavement Design Guide for Local Paved Roads in Wyoming.
    Kasperick, T., & Ksaibati, K. (2015b). Calibration of the Mechanistic-Empirical Pavement Design Guide for Local Paved Roads in Wyoming.
    Kaya, O. (2015). Investigation of AASHTOWare Pavement ME Design/Darwin-METM Performance Prediction Models for Iowa Pavement Analysis and Design.
    Kenis, W. J. (1978). Predictive Design Procedure, VESYS User’s Manual: An Interim Design Method for Flexible Pavement Using the VESYS Structural Subsystem. In Final Report No. FHWA-RD-77-154, FHWA, Washington D.C.
    Khurshid, M. B., Irfan, M., & Labi, S. (2010). Optimal performance threshold determination for highway asset interventions: Analytical framework and application. Journal of Transportation Engineering, 137(2), 128–139. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000198
    Khurshid, M. B., Muhammad Irfan, ;, & Labi, S. (2011). Optimal Performance Threshold Determination for Highway Asset Interventions: Analytical Framework and Application. Journal of Transportation Engineering, 137, No. 2. https://doi.org/10.1061/ASCETE.1943-5436.0000198
    Kim, R., & Muthadi, N. (2007). Implementation Plan for the New Mechanistic Empirical Pavement Design Guide. In NCDOT Project 2005-28. North Carolina State University, Raleigh, NC.
    Kim, Y. R., Underwood, B., Sakhaei Far, M., Jackson, N., & Puccinelli, J. (2011). LTPP Computed Parameter : Dynamic Modulus. In Final Report for Project: DTFH61-02-D-00139. Washington, DC: Federal Highway Administration (Issue 56).
    Lamptey, G., Labi, S., & Li, Z. (2008). Decision support for optimal scheduling of highway pavement preventive maintenance within resurfacing cycle. Decision Support Systems, 46(1), 376–387. https://doi.org/10.1016/j.dss.2008.07.004
    Larson, G., & Dempsey, B. J. (1997). Enhanced Integrated Climatic Model Version 2.0. In Final Report DTFA MN/DOT 72114. Department of Civil and Environmental Engineering. https://www.ideals.illinois.edu/handle/2142/95718
    Mazari, M., & Rodriguez, D. D. (2016). Prediction of pavement roughness using a hybrid gene expression programming-neural network technique. Journal of Traffic and Transportation Engineering (English Edition), 3(5), 448–455. https://doi.org/10.1016/j.jtte.2016.09.007
    MDOT. (2015). Michigan DOT User Guide For Pavement Design. March.
    Mohd Hasan, M. R., Hiller, J. E., & You, Z. (2016). Effects of mean annual temperature and mean annual precipitation on the performance of flexible pavement using ME design. International Journal of Pavement Engineering, 17(7), 647–658. https://doi.org/10.1080/10298436.2015.1019504
    MOTC. (2011). The Survey of Vehicle Operation Cost and Application for Economical Benefits Evaluation of Transportation Projects(2/2.
    Nassiri, S., Shafiee, M. H., & Bayat, A. (2013). Development of roughness prediction models using alberta transportation’s pavement management system. International Journal of Pavement Research and Technology, 6(6), 714–720. https://doi.org/10.6135/ijprt.org.tw/2013.6(6).714
    NCHRP. (2009). User Manual and Local Calibration Guide for the Mechanistic-Empirical Pavement Design Guide and Software. In NCHRP Project 1-40B. Washington, DC: Transportation Research Board.
    NCHRP 1-37A. (2004). Guide for mechanistic-empirical design of new and rehabilitated pavement structures. NCHRP Project 1-37A. Washington, DC: Transportation Research Board.
    Odoki, J. B., & Kerali, G. R. H. (2001). Volume Four: Analytical Framework and Model Descriptions. Highway Development and Management Model HDM-4 (Version 1.2).
    Odoki, J. B., & Kerali, H. G. R. (2000). HDM-4 Manual: Volume 1 - Overview of HDM-4.
    Onifade, I., Dinegdae, Y., & Birgisson, B. (2017). Hierarchical approach for fatigue cracking performance evaluation in asphalt pavements. Frontiers of Structural and Civil Engineering, 11(3), 257–269. https://doi.org/10.1007/s11709-017-0410-1
    Onyango, M., Owino, J., & Fomunung, I. (2019). Traffic Data Input for Mechanistic Empirical Pavement Design Guide ( MEPDG ) for Tennessee.
    Peshkin, D. G., Hoerner, T. E., & Zimmerman, K. A. (2004). Optimal Timing of Pavement Preventive Maintenance Treatment Applications: NCHRP Report Number 523. In Transportation Research Board. http://www.national-academies.org/trb/bookstore
    Pierce, L. M., & Ginger, M. (2014). Implementation of the AASHTO Mechanistic-Empirical Pavement Design Guide and Software. In Implementation of the AASHTO Mechanistic-Empirical Pavement Design Guide and Software. https://doi.org/10.17226/22406
    Porter, T. M. (2005). Procurement models for road maintenance. TAC/ATC 2005 - 2005 Annual Conference and Exhibition of the Transportation Association of Canada: Transportation - Investing in Our Future.
    Qiao, J. Y., Du, R., Labi, S., Fricker, J. D., & Sinha, K. C. (2021). Policy implications of standalone timing versus holistic timing of infrastructure interventions: Findings based on pavement surface roughness. Transportation Research Part A: Policy and Practice, 148(February), 79–99. https://doi.org/10.1016/j.tra.2021.02.021
    Ram, P., & Peshkin, D. (2013). Cost Effectiveness of the MDOT Preventive Maintenance Program. April.
    Sandra, A. K., & Sarkar, A. K. (2013). Development of a model for estimating International Roughness Index from pavement distresses. International Journal of Pavement Engineering, 14(8), 715–724. https://doi.org/10.1080/10298436.2012.703322
    Sayyady, F., Fathi, Y., List, G. F., & Stone, J. R. (2013). Locating Traffic Sensors on a Highway Network: Models and Algorithms. Https://Doi.Org/10.3141/2339-04, 2339, 30–38. https://doi.org/10.3141/2339-04
    Shi, Y., Xiang, Y., Xiao, H., & Xing, L. (2021). Joint optimization of budget allocation and maintenance planning of multi-facility transportation infrastructure systems. European Journal of Operational Research, 288(2), 382–393. https://doi.org/10.1016/j.ejor.2020.05.050
    Shuler, S. (2016). Effectiveness of Two Reflection Crack Attenuation Techniques in Asphalt Pavements. Construction Research Congress 2016, 2039–2049. https://doi.org/10.1061/9780784479827.203
    Sivaneswaran, N., Pierce, L. M., & Mahoney, J. P. (2001). Everseries pavement analysis programs. In Washington State Department of Transportation Report, Olympia, WA.
    Solanki, P., & Ray, B. (2015). Sensitivity analysis of flexible pavement sections using mechanistic-empirical pavement design guide. International Journal of Pavement Research and Technology, 8(6), 433–439. https://doi.org/10.6135/ijprt.org.tw/2015.8(6).433
    Solatifar, N., Kavussi, A., & Abbasghorbani, M. (2021). Dynamic Modulus Predictive Models for In-Service Asphalt Layers in Hot Climate Areas. Journal of Materials in Civil Engineering, 33(2), 04020438. https://doi.org/10.1061/(asce)mt.1943-5533.0003511
    Stankevich, N., Qureshi, N., & Queiroz, C. (2005). Performance-based Contracting for Preservation and Improvement of Road Assets. December, 1–8.
    Sufian, A. A. (2013). Local Calibration of the Mechanistic Empirical Pavement Design Guide for Kansas. In Technology. Kansas State University. https://krex.k-state.edu/dspace/handle/2097/34533
    Sultana, M., Rahman, A., & Chowdhury, S. (2012). Performance Based Maintenance of Road Infrastructure by Contracting—A Challenge for Developing Countries. Journal of Service Science and Management, 05(02), 118–123. https://doi.org/10.4236/JSSM.2012.52015
    Sun, L. (2016). LCCA-based design method for asphalt pavement. In Structural Behavior of Asphalt Pavements. https://doi.org/10.1016/b978-0-12-849908-5.00008-0
    Tayebali, A. A., Deacon, J. A., Coplantz, J. S., Harvey, J. T., & Monismith, C. L. (1994). Fatigue Response of Asphalt Aggregate Mixes. In SHRP-A-404, Strategic Highway Research Program, National Research Council, Washington, D.C.
    The World Bank. (1986). The International Road Roughness Experiment (Issue 45).
    Timm, D., Birgisson, B., & Newcomb, D. (1998). Development of mechanistic-empirical pavement design in Minnesota. Transportation Research Record, 1629, 181–188. https://doi.org/10.3141/1629-20
    Titus-Glover, L., Rao, C., & Sadasivam, S. (2020). Local Calibration of the Pavement ME for Missouri. June.
    TRB. (2012). Sensitivity Evaluation of the MEPDG for Flexible Pavements. http://onlinepubs.trb.org/onlinepubs/nchrp/docs/NCHRP01-47_FR.pdf
    Tseng, P. H., Lin, D. Y., & Chien, S. (2014). Investigating the impact of highway electronic toll collection to the external cost: A case study in Taiwan. Technological Forecasting and Social Change, 86, 265–272. https://doi.org/10.1016/j.techfore.2013.10.019
    UCPRC. (2010). CalME: Caltrans Mechanistic-Empirical Tool. In University of California Pavement Research Center.
    Vandenbossche, J. M., Dufalla, N., & Li, Z. (2017). Bonded concrete overlay of asphalt mechanical-empirical design procedure. International Journal of Pavement Engineering, 18(11), 1004–1015. https://doi.org/10.1080/10298436.2016.1141410
    von Quintus, H. L., Yau, A., Witczak, M. W., Andrei, D., & Houston, W. N. (2001). Final Document Appendix OO-1: Background and Preliminary Smoothness Prediction Models for Flexible Pavements. Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures, February.
    Wahlmann, A. (2016). Freeway Construction in Taiwan. https://mobacommunity.com/blogs/entry/Freeway-construction-in-Taiwan
    Wang, J. (2001). Three-Dimensional Finite Element Analysis of Flexible Pavements. In The University of Maine (Vol. 15, Issues 1–3). http://www.library.umaine.edu/theses/pdf/WangJ2001.pdf
    Warren, H., & Dieckrnann, W. L. (1963). Numerical Computation of Stresses and Strains in a Multiple-layer Asphalt Pavement System", Internal Report. In Cheron Research Corporation, Richmond, CA.
    Wirahadikusumah, R., Susanti, B., Coffey, V., & Adighibe, C. (2015). Performance-based contracting for roads - Experiences of Australia and Indonesia. Procedia Engineering, 125, 5–11. https://doi.org/10.1016/j.proeng.2015.11.002
    Witczak, M. W., El-Basyouny, M., & El-Badawy, S. (2007). Incorporation of the new (2005) E* predictive model in the MEPDG. In NCHRP 1-40D Inter-Team Technical Rep. Tempe, AZ: Arizona State Univ.
    Witczak, M. W., & Fonseca, O. A. (1996). Revised predictive model for dynamic (complex) modulus of asphalt mixtures. Transportation Research Record, 1540, 15–23. https://doi.org/10.3141/1540-03
    Witczak, M. W., & Hwang, D. (1981). Program DAMA (Chevron), User’s Manual. In Department of Civil Engineering, University of Maryland.
    World Bank. (2004). Procurement under IBRD Loans and IDA Credits: Guidelines. World Bank, Washington, D.C., May 2004, 1–45.
    Yuan, X.-X., & Nemtsov, I. (2018). Local Calibration of the MEPDG Distress and Performance Models for Ontario’s Flexible Roads: Overview, Impacts, and Reflection Summary of Local Calibration Results Need for Local Calibration. Transportation Research Record, 2672(40), 207–216. https://doi.org/10.1177/0361198118759013
    Zhou, F., Fernando, E., & Scullion, T. (2008). A Review of Performance Models and Test Procedures with Recommendations for Use in the Texas M-E Design Program. FHWA/TX-08/0-5798-1 2. Texas Department of Transportation, 7(2), 1–42.
    Zhou, F., Lytton, R. L., Hu, S., Luo, R., Tsai, F.-L., & Lee, S. I. (2010). Models for Predicting Reflection Cracking of Hot-Mix Asphalt Overlays. In Models for Predicting Reflection Cracking of Hot-Mix Asphalt Overlays. https://doi.org/10.17226/14410
    Zhou, F., Scullion, T., & Sun, L. (2004). Verification and modeling of three-stage permanent deformation behavior of asphalt mixes. Journal of Transportation Engineering, 130(4), 486–494. https://doi.org/10.1061/(ASCE)0733-947X(2004)130:4(486)
    Zietlow, G. (2004). Implementing Performance-based Road Management and Maintenance Contracts in Developing Countries - An Instrument of German Technical Cooperation -. November, 1–21. http://zietlow.com/docs/pbmmc-gtz.pdf
    Zietlow, G. (2005). Cutting Costs and Improving Quality through Performance-Based Road Management and Maintenance Contracts - The Latin American and OECD Experiences -. April, 19–23.

    無法下載圖示 校內:2023-12-31公開
    校外:2025-12-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE