簡易檢索 / 詳目顯示

研究生: 林柏邑
Lin, Po-Yi
論文名稱: ZSM-5沸石擔載鎳鉬雙金屬觸媒於大豆油加氫處理以製備生質燃料之研究
Study on Hydrotreatment of Soybean Oil for Biofuel Production with Ni/Mo Bimetallic ZSM-5 Catalysts
指導教授: 陳炳宏
Chen, Bing-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 116
中文關鍵詞: 生質燃料大豆油ZSM-5沸石鎳鉬雙金屬加氫處理
外文關鍵詞: Biofuel, NiMo/ZSM-5, Hydrotreatment, Soybean Oil, Semi-batch
相關次數: 點閱:97下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著世界人口不斷增長,對於能源的需求日益增加,大量的石化燃料開發與燃燒增加溫室氣體的排放,發展可再生之生物燃料取代傳統石化燃料是當今各國首要關注議題之一。植物油可透過異相觸媒催化轉脂化反應生產生質柴油,於歐美各國已有商業應用實例,然而高含氧量導致低溫流動性差及能量密度低的缺點。加氫處理能有效去除三酸甘油脂中的氧原子,改善生質柴油的缺點,生產更高品質的替代生質燃料,且加氫處理生產設備能沿用化工廠固有之石油精煉基礎設施,提高商用可行性。應用適當異相雙功能型觸媒可降低加氫處理的反應環境條件與增加反應速率,有效達到增效作用,催化劑中的酸性點位具有裂解及異構化功能,金屬活性中心能提供氫溢流與脫氧之活性點位,異相催化方式則具有分離成本低的優勢。本實驗使用雙金屬雙功能型異相觸媒進行生質燃油生成反應,探討不同種類之觸媒在加氫脫氧反應上的表現。
    本實驗使用ZSM-5型沸石作為載體,其具有高比表面積能均勻金屬活性點位,提高分散性,且能同時提供布忍斯特酸性點位與路易士酸性點位進行加氫裂解及異構化反應,使用經濟便利的含浸法擔載鎳鉬雙金屬於沸石表面進行觸媒改質,比較鎳金屬擔載量對鎳鉬雙金屬觸媒催化加氫脫氧反應之影響,本實驗亦透過質譜儀分析液相產物與氣相產物之成分組成。使用過之雙金屬觸媒使用離心機與液相產物分離後,透過FT-IR與ICP討論觸媒失活程度,評估耐用性。由實驗結果可知,於大豆油:十氫萘=1:3體積比的條件,在325°C、氫氣壓力40 bars的反應環境下以5 wt%觸媒使用量催化加氫脫氧反應,增加鎳金屬擔載量能減緩裂解反應,提高選擇率。

    The hydrotreatment of soybean oil to liquid alkane fuels was conducted in presence of zeolite ZSM-5 supported bimetallic Ni and Mo catalysts. The bimetallic Ni and Mo catalysts, aka NiMo/ZSM5, were successfully prepared on zeolite ZSM-5 by incipient wetness impregnation method. Prior to the hydrotreatment process, NiMo/ZSM5 were activated with hydrogen stream at 500°C for 1 h, i.e. reducing NiMo/ZSM5 from an oxidation state to a reduction state denoted as NiMo(R)/ZSM5. The catalyzed hydrotreating reaction of soybean oil was conducted in a semi-batch autoclave equipped with magnetic stirrer at 325°C under 40 bars of pure hydrogen. ICP-OES was conducted to characterize the loading of Ni and Mo as 9.4 wt% and 4.8 wt%, respectively, based on the mass of ZSM-5. After 4 hours hydrotreatment, the highest yield near 25% could be achieved. Various instruments were employed to characterize the catalysts, such as XRD, SEM, TEM, BET, SQUID, H2-TPR and FT-IR. The conversions were determined by analyzing liquid by GC-FID. In addition, isomerized alkanes and gas phase product were revealed by GC-MS.

    摘要 I Abstract II 誌謝 XXII 目錄 XXIII 圖目錄 XXVIII 表目錄 XXXII 第一章 緒論 1 1-1前言 1 1-2研究動機與目的 3 第二章 文獻回顧 5 2-1生質能源 5 2-1-1生質燃料簡介 5 2-1-2生質航空燃油 6 2-1-3生質航空燃油國際規範 9 2-1-4生質航空燃油之技術發展 12 2-1-4-1費托合成煤油 (Fischer-Tropsch hydroprocessed synthesized paraffinic kerosene, FT-SPK) 12 2-1-4-2氫化處理脂肪酸 (hydroprocessed esters and fatty acid, HEFA) 12 2-1-4-3合成異構煤油(synthesized iso-paraffins from hydroprocessed fermented sugars, SIP) 13 2-1-4-4費托含芳香族合成煤油 (FT synthesized paraffinic kerosene plus aromatics, FT-SPK/A) 13 2-1-4-5 醇轉化合成煤油 (alcohol to jet - synthesis paraffin kerosene, ATJ-SPK) 13 2-1-4-6 水熱催化(catalytic hydrothermolysis jet, CHJ) 13 2-1-5國內生質航油之需求與前景 14 2-2加氫脫氧反應 15 2-2-1加氫脫氧反應機制 15 2-2-2加氫脫氧應用之觸媒 17 2-2-2-1過渡金屬硫化型觸媒 17 2-2-2-2貴金屬觸媒 18 2-2-2-3磷化型、氮化型與碳化型觸媒 20 2-2-2-4金屬擔載型觸媒 21 2-2-2-5載體對觸媒活性之影響 21 2-2-2-6觸媒失活因素 22 2-2-3反應影響參數 23 2-2-3-1溫度 23 2-2-3-2壓力 23 2-2-4加氫異構化 (Isomerization) 24 2-3氫溢流現象 25 2-4沸石觸媒 26 2-4-1簡介 26 2-4-2沸石結構 27 2-4-4特性與應用 30 2-4-5 ZSM-5簡介 33 2-4-6觸媒改質 34 2-4-6-1含浸法 (Impregnation Method) 34 2-4-6-2離子交換法 (Ion-Exchange Method) 35 2-4-6-3溶膠凝膠法 (Sol-Gel Method) 36 第三章 實驗 37 3-1 研究架構與流程 37 3-2實驗藥品 38 3-3實驗設備 40 3-4實驗方法 42 3-4-1含浸法改質觸媒 42 3-4-2觸媒活化 42 3-4-3加氫反應 43 3-3-4觸媒回收 43 3-4-5觸媒鑑定與分析 44 3-4-5-1 X光繞射分析儀 (X-ray Diffraction Analyzer, XRD) 44 3-4-5-2比表面積儀 (Specific Surface Area & Pore Size Distribution Analyzer, BET) 44 3-4-5-3熱重分析儀 (Thermogravimetric Analyzer, TGA) 45 3-4-5-4掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 46 3-4-5-5傅立葉紅外線光譜分析儀 (Fourier transform infrared, FT-IR) 46 3-4-5-6感應耦合電漿原子發射光譜儀 (Inductively Coupled Plasma-Optical Emission Spectrometer, ICP-OES) 47 3-4-5-7氫氣程溫還原反應 (Hydrogen Temperature-Programmed Reduction, H2-TPR) 47 3-4-5-8觸媒酸度鑑定 48 3-4-5-9超導量子干涉磁量儀 (Superconducting Quantum Interference Device, SQUID) 48 3-4-5-10穿透式電子顯微鏡 (Transmission Electron Microscope, TEM) 49 3-4-7產物分析 49 3-4-7-1氣相層析儀 (Gas Chromatography, GC) 49 3-4-7-2氣相質譜儀 (Gas Chromatography, GC-MS) 50 3-4-7-3產物檢量線製作與產率分析 51 第四章 結果與討論 52 4-1觸媒鑑定與特性分析 52 4-1-1鎳鉬雙金屬觸媒XRD鑑定 52 4-1-2鎳鉬雙金屬觸媒H2-TPR鑑定 56 4-1-3鎳鉬雙金屬觸媒SQUID鑑定 58 4-1-4鎳鉬雙金屬觸媒ICP-OES鑑定 61 4-1-5鎳鉬雙金屬觸媒SEM與TEM鑑定 62 4-1-6鎳鉬雙金屬觸媒FT-IR鑑定 64 4-1-7鎳鉬雙金屬觸媒BET鑑定 66 4-1-8鎳鉬雙金屬觸媒TGA鑑定 72 4-1-9鎳鉬雙金屬觸媒酸性鑑定 73 4-2觸媒催化加氫反應 75 4-2-1空白實驗 75 4-2-1-1正十二烷之空白實驗 75 4-2-1-2十氫萘之空白實驗 77 4-2-2觸媒催化脂肪酸加氫反應 80 4-2-3觸媒種類對大豆油加氫反應之影響 81 4-2-3-1擔載鎳鉬比例1:1 81 4-2-3-2擔載不同鎳鉬比例 83 4-2-4液/氣相產物之GC-MS分析 87 4-2-5液相產物之FT-IR分析 95 4-2-6氫氣消耗量 98 4-3回收觸媒鑑定 102 4-3-1回收觸媒ICP-OES鑑定 102 4-3-2回收觸媒FT-IR鑑定 103 第五章 結論 105 參考文獻 106 附錄 112

    Ameen, M, Azizan, MT, Yusup, S, Ramli, A, Yasir, M. Catalytic hydrodeoxygenation of triglycerides: An approach to clean diesel fuel production. Renewable and Sustainable Energy Reviews, Vol. 80, pp. 1072-1088. (2017)

    Arnoldy, P, De Jonge, JCM, Moulijn, JA. Temperature-programed reduction of molybdenum(vi) oxide and molybdenum(iv) oxide. The Journal of Physical Chemistry, Vol. 89, No. 21, pp. 4517-4526. (1985)

    Bock, C, Halvorsen, H, MacDougall, B. Catalyst synthesis techniques. Pem fuel cell electrocatalysts and catalyst layers: Fundamentals and applications, ed. by Zhang J, London: Springer London, pp. 447-485. (2008)

    Busca, G [2014]. Zeolites and other structurally microporous solids as acid–base materials, In Heterogeneous catalytic materials, pp. 197-249.

    Candau, JFC, Conner, WC. The spillover of hydrogen onto silica: IV. The use of scanning ftir to follow spillover from a point source. Journal of Catalysis, Vol. 106, No. 2, pp. 378-385. (1987)

    Chen, L, Jansson, J, Skoglundh, M, Grönbeck, H. Mechanism for solid-state ion exchange of cu+ into zeolites. The Journal of Physical Chemistry C, Vol. 120, No. 51, pp. 29182-29189. (2016)

    Chhabra, RP. CRC handbook of thermal engineering. CRC Press. (2017)

    Conner, WC, Falconer, JL. Spillover in heterogeneous catalysis. Chemical Reviews, Vol. 95, No. 3, pp. 759-788. (1995)

    Daggett, DL, Hadaller, O, Maurice, L, Rumizen, M, Brown, N, Altman, R, Aylesworth, H. The commercial aviation alternative fuels initiative. SAE Transactions, Vol. 116, pp. 953-965. (2007)

    Dyer, A. Zeolites. Encyclopedia of materials: Science and technology, Oxford: Elsevier, pp. 9859-9863. (2001)

    Food, Nations, AOotU, Organization, WH. Fats and oils in human nutrition: Report of a joint expert consultation, rome, 19-26 october 1993. World Health Organization. (1994)

    Hachemi, I, Murzin, DY. Kinetic modeling of fatty acid methyl esters and triglycerides hydrodeoxygenation over nickel and palladium catalysts. Chemical Engineering Journal, Vol. 334, pp. 2201-2207. (2018)

    Hadaller, O. Alternative aircraft fuels. ASTM Standardization News, Vol. 35, No. 4, pp. 36-39. (2007)

    He, Z, Wang, X. Hydrodeoxygenation of model compounds and catalytic systems for pyrolysis bio-oils upgrading. Catalysis for Sustainable Energy, Vol. 1. (2012)

    Hermida, L, Abdullah, AZ, Mohamed, AR. Deoxygenation of fatty acid to produce diesel-like hydrocarbons: A review of process conditions, reaction kinetics and mechanism. Renewable and Sustainable Energy Reviews, Vol. 42, pp. 1223-1233. (2015)

    Ibarra, JV, Royo, C, Monzón, A, Santamaría, J. Fourier transform infrared spectroscopic study of coke deposits on a cr2o3-al2o3 catalyst. Vibrational Spectroscopy, Vol. 9, No. 2, pp. 191-196. (1995)

    International, A. D7566-19b standard specification for aviation turbine fuel containing synthesized hydrocarbons. ASTM International, West Conshohocken, PA. (2019)

    Karge, HG, Hunger, M, Beyer, HK. Characterization of zeolites — infrared and nuclear magnetic resonance spectroscopy and x-ray diffraction. Springer Berlin Heidelberg, Berlin, Heidelberg. (1999)

    Kerr, GT. Synthetic zeolites. Scientific American, Vol. 261, No. 1, pp. 100-105. (1989)

    Kokotailo, GT, Lawton, SL, Olson, DH, Meier, WM. Structure of synthetic zeolite zsm-5. Nature, Vol. 272, No. 5652, pp. 437-438. (1978)

    Lee, W-S, Wang, Z, Wu, RJ, Bhan, A. Selective vapor-phase hydrodeoxygenation of anisole to benzene on molybdenum carbide catalysts. Journal of Catalysis, Vol. 319, pp. 44-53. (2014)

    Li, K, Wang, R, Chen, J. Hydrodeoxygenation of anisole over silica-supported Ni2P, MoP, and NiMoP catalysts. Energy & Fuels, Vol. 25, No. 3, pp. 854-863. (2011)

    Li, Y, Li, L, Yu, J. Applications of zeolites in sustainable chemistry. Chem, Vol. 3, No. 6, pp. 928-949. (2017)

    Loewenstein, W. The distribution of aluminum in the tetrahedra of silicates and aluminates. American Mineralogist, Vol. 39, No. 1-2, pp. 92-96. (1954)

    Mäki-Arvela, P, Murzin, DY. Effect of catalyst synthesis parameters on the metal particle size. Applied Catalysis A: General, Vol. 451, pp. 251-281. (2013)

    Mars, P, van Krevelen, DW. Oxidations carried out by means of vanadium oxide catalysts. Chemical Engineering Science, Vol. 3, pp. 41-59. (1954)

    McCusker, LB, Liebau, F, Engelhardt, G. Iupac recommendations 2001. Pure Appl. Chem., Vol. 73, No. 2, pp. 381-394. (2001)

    Moore, RH, Thornhill, KL, Weinzierl, B, Sauer, D, D'Ascoli, E, Kim, J, Lichtenstern, M, Scheibe, M, Beaton, B, Beyersdorf, AJ, Barrick, J, Bulzan, D, Corr, CA, Crosbie, E, Jurkat, T, Martin, R, Riddick, D, Shook, M, Slover, G, Voigt, C, White, R, Winstead, E, Yasky, R, Ziemba, LD, Brown, A, Schlager, H, Anderson, BE. Biofuel blending reduces particle emissions from aircraft engines at cruise conditions. Nature, Vol. 543, No. 7645, pp. 411-415. (2017)

    Mortensen, PM, Grunwaldt, JD, Jensen, PA, Knudsen, KG, Jensen, AD. A review of catalytic upgrading of bio-oil to engine fuels. Applied Catalysis A: General, Vol. 407, No. 1-2, pp. 1-19. (2011)

    Moshoeshoe, M, Nadiye-Tabbiruka, MS, Obuseng, V. A review of the chemistry, structure, properties and applications of zeolites. American Journal of Materials Science, Vol. 7, No. 5, pp. 126-221. (2017)

    Nagai, M. Transition-metal nitrides for hydrotreating catalyst—synthesis, surface properties, and reactivities. Applied Catalysis A: General, Vol. 322, pp. 178-190. (2007)

    National Academies of Sciences, E, Medicine. Commercial aircraft propulsion and energy systems research: Reducing global carbon emissions. The National Academies Press, Washington, DC. (2016)

    Niwa, M, Katada, N, Okumura, K. Characterization and design of zeolite catalysts. Springer Series in Materials Science. (2010)

    Olcese, RN, Bettahar, M, Petitjean, D, Malaman, B, Giovanella, F, Dufour, A. Gas-phase hydrodeoxygenation of guaiacol over fe/sio2 catalyst. Applied Catalysis B: Environmental, Vol. 115-116, pp. 63-73. (2012)

    Olson, DH, Kokotailo, GT, Lawton, SL, Meier, WM. Crystal structure and structure-related properties of zsm-5. The Journal of Physical Chemistry, Vol. 85, No. 15, pp. 2238-2243. (1981)

    Ono, Y. A survey of the mechanism in catalytic isomerization of alkanes. Catalysis Today, Vol. 81, No. 1, pp. 3-16. (2003)

    Parry, EP. An infrared study of pyridine adsorbed on acidic solids. Characterization of surface acidity. Journal of Catalysis, Vol. 2, No. 5, pp. 371-379. (1963)

    Perego, C, Bosetti, A. Biomass to fuels: The role of zeolite and mesoporous materials. Microporous and Mesoporous Materials, Vol. 144, No. 1-3, pp. 28-39. (2011)

    Robak, K, Balcerek, M. Review of second generation bioethanol production from residual biomass. Food Technol Biotechnol, Vol. 56, No. 2, pp. 174-187. (2018)

    Romero, Y, Richard, F, Brunet, S. Hydrodeoxygenation of 2-ethylphenol as a model compound of bio-crude over sulfided mo-based catalysts: Promoting effect and reaction mechanism. Applied Catalysis B: Environmental, Vol. 98, No. 3-4, pp. 213-223. (2010)

    Roque-Malherbe, R. Complementary approach to the volume filling theory of adsorption in zeolites. Microporous and Mesoporous Materials, Vol. 41, No. 1, pp. 227-240. (2000)

    Shafaghat, H, Rezaei, PS, Ashri Wan Daud, WM. Effective parameters on selective catalytic hydrodeoxygenation of phenolic compounds of pyrolysis bio-oil to high-value hydrocarbons. RSC Advances, Vol. 5, No. 126, pp. 103999-104042. (2015)

    Si, Z, Zhang, X, Wang, C, Ma, L, Dong, R. An overview on catalytic hydrodeoxygenation of pyrolysis oil and its model compounds. Catalysts, Vol. 7, No. 6. (2017)

    Sienkiewicz, AM, Czub, P. The unique activity of catalyst in the epoxidation of soybean oil and following reaction of epoxidized product with bisphenol a. Industrial Crops and Products, Vol. 83, pp. 755-773. (2016)

    Smith, JM, Van Ness, HC, Abbott, M. Introduction to chemical engineering thermodynamics. McGraw-Hill Education. (2005)

    Thommes, M, Kaneko, K, Neimark, AV, Olivier, JP, Rodriguez-Reinoso, F, Rouquerol, J, Sing, KSW. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (iupac technical report). Pure and Applied Chemistry, Vol. 87, No. 9-10, pp. 1051-1069. (2015)

    Tušar, NN, Kaučič, V, Logar, NZ. Functionalized porous silicates as catalysts for water and air purification. New and future developments in catalysis, pp. 365-383. (2013)

    Vaidya, UJ, Dikshit, N, Sultan, SM. Oil content and fatty acid composition of soybean (glysine max l.) genotypes evaluated under rainfed conditions of kashmir himalayas in india. Journal of Applied and Natural Science, Vol. 7, No. 2, pp. 910-915. (2015)

    Wang, W-C, Tao, L. Bio-jet fuel conversion technologies. Renewable and Sustainable Energy Reviews, Vol. 53, pp. 801-822. (2016)

    Weitkamp, J. Zeolites and catalysis. Solid State Ionics, Vol. 131, No. 1, pp. 175-188. (2000)

    Zimmermann, NER, Haranczyk, M. History and utility of zeolite framework-type discovery from a data-science perspective. Crystal Growth & Design, Vol. 16, No. 6, pp. 3043-3048. (2016)

    Zoubida, L, Hichem, B. The nanostructure zeolites mfi-type zsm5. Chapter 3 pp. (2018)

    李家文. Study on Catalyzed Esterification of High-Acid Soybean Oil with Zeolite H-ZSM5. (2016)

    李昭緯. Study on Hydrotreatment of Palmitic Acid for Biofuel Production with Ni/Mo Bimetallic ZSM-5 Catalysts. (2019)

    林威廷, 萬皓鵬, 蘇乾元, 郭彥廷. 生質航空燃油的發展與規範. (2017)
    謝哲隆. 生質物熱解液化轉製航空生質燃料用油技術. (2014)

    下載圖示 校內:2025-07-07公開
    校外:2025-07-07公開
    QR CODE