簡易檢索 / 詳目顯示

研究生: 許晉祥
Hsu, Chin-Hsiang
論文名稱: 鎳酸鑭的合成及其熱電與光催化性質之探討
The study on the synthesis, thermoelectric and photocatalytic properties of LaNiO3
指導教授: 齊孝定
Qi, Xiao-Ding
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 107
中文關鍵詞: 鎳酸鑭熱電材料光降解溶膠-凝膠法氧空缺
外文關鍵詞: LaNiO3, Thermoelectric material, Photodegradation, Sol-gel method, Oxygen deficiency
相關次數: 點閱:95下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來因應能源問題以及環境污染,對綠色能源以及環境復育的研究愈來愈多,其中也包括對熱電及光降解材料的研究,我們預期具鈣鈦礦結構的鎳酸鑭 (LaNiO3) 於這兩種領域應用是非常有潛力的。鎳酸鑭的能帶結構可以透過摻雜不同半徑的稀土離子來改變,使得摻雜之鎳酸鑭的導電性從原本金屬型轉變為半導體型,且能隙寬度可以藉由改變Ni-O-Ni的鍵角來調節(在RNiO3的系統中,R為任一稀土元素,Ni-O-Ni的鍵角越小表示其電性有趨向半導體型表現的趨勢)。此外,鎳酸鑭的能帶結構和導電性亦可通過控制材料中的氧劑量比來改變。本研究首先從水熱法、固相燒結法、溶膠-凝膠法選出最適合的鎳酸鑭合成方法,而後以摻雜離子半徑較小的元素銪以及氬氣氣氛下退火還原的方式,期望能夠使原本金屬型的鎳酸鑭因此產生能隙,達到調控導電性和光吸收效率之目的,並進行熱電及光降解性質之探討。
    在摻雜實驗中,所合成之La1-xEuxNiO3 (x=0~ 0.5)仍符合鈣鈦礦的結構特性,空間群皆為R-3c。由晶格結構軟體分析可知,Ni-O-Ni的鍵角從未摻雜時的170.8°於摻雜50% (x= 0.5)後縮小至152.7°,但仍未達到轉變成半導體型所需的角度:小於151.8°(半導體型的鎳酸釤其鍵角為151.8°),因而席貝克係數沒有顯著的提升,而所有試片之電性表現也仍呈現金屬型。
    在氧劑量比調控方面,當無氧空缺之鎳酸鑭(LaNiO3-δ,δ=0)在氬氣氣氛中於500°C持溫8小時後,經X射線繞射圖譜分析證實已形成缺氧相LaNiO2.7,空間群為P1。若持溫24小時,則可得LaNiO2.5,空間群為C2/c,此時退火還原後的產物已不符合鈣鈦礦結構的特性。席貝克係數量測發現,LaNiO2.7之係數僅略大於無氧空缺之鎳酸鑭,範圍落在-9 ~ -17 μV/K ,但電性的量測結果卻顯示其仍為金屬型,推測樣品中除LaNiO2.7外仍包含一定比例的LaNiO3。也因為如此,光降解實驗中,添加LaNiO2.7之溶液其分解百分率僅略優於亞甲基藍本身的自降解效果。

    The researches on green energy production and environmental remediation have attracted great attention in recent years. Thermoelectric energy conversion and photodegradation of organic pollutants are among the relevant technologies studied intensively. Perovskite-structured LaNiO3 has great potential for applications in both fields. Stoichiometric LaNiO3 has metallic conductivity without a bandgap. However, by doping with small rare-earth (RE) ions, it may become a semiconductor with the bandgap tunable by the Ni-O-Ni bond angle, which is dependent on the size of RE ions. Furthermore, the electronic band structure of LaNiO3 can also be varied by its oxygen stoichiometry, allowing LaNiO3 to be tuned into a semiconductor with a tunable bandgap dependent on the extent of oxygen deficiency. In this work, LaNiO3 was synthesized by solid-state sintering, sol-gel, and hydrothermal methods. However, sol-gel was found to be the most suitable method and was used for the synthesis of the Eu-doped samples, i.e.
    La1-xEuxNiO3 (x=0~0.5). Structural refinements based on the X-ray diffraction data indicated that the Ni-O-Ni bond angle reduced from 170.8° in LaNiO3 to 152.7° in La0.5Eu0.5NiO3, which was still too large compared to 151.8° that is required to open a bandgap as in the case of SmNiO3. As the result, the electric conductivity of La1-xEuxNiO3 (x=0~0.5) still had metallic behavior and their Seebeck coefficient was not improved. Oxygen-deficient phases, i.e. LaNiO2.7 and LaNiO2.5, were obtained after annealing in Ar at 500°C for 8 and 24 hours, respectively. Their crystal structures were distorted greatly with the space groups of P1 and C2/c for LaNiO2.7 and LaNiO2.5, respectively. LaNiO2.7 showed a slightly improved Seebeck coefficient compared to LaNiO3, which fell between -9 and -17 μV/K. However, LaNiO2.7 still displayed a metallic conductivity, implying that the samples might contain a fair amount of the metallic LaNiO3 in addition to the main phase of LaNiO2.7. As the result, the samples showed a poor photodegradation effect. The photodegradation percentage of methylene blue with the addition of LaNiO2.7 only improved slightly compared to the self-degradation.

    摘要 I Extended Abstract III 致謝 XII 目錄 XIV 表目錄 XVIII 圖目錄 XIX 第一章 緒論 1 1-1前言 1 1-2研究動機與目的 4 第二章 原理與文獻回顧 5 2-1熱電材料 5 2-1-1席貝克效應 (Seebeck Effect) 5 2-1-2帕爾帖效應 (Peltier Effect) 8 2-1-3湯木森效應 (Thomson Effect) 9 2-2影響熱電效應之因素簡介 10 2-2-1電子擴散項 10 2-2-2聲子拖曳 (Phonon Drag) 11 2-3熱電材料之物理性質 12 2-3-1電導率 (Resistivity)[13, 14] 12 2-3-2熱傳導率(κ) 14 2-4熱電轉換效率 15 2-4-1提高功率因子 17 2-4-2降低熱傳導率 17 2-4-3結語 17 2-5半導體光觸媒 20 2-5-1半導體性質 20 2-5-2光觸媒的發展 22 2-5-3光觸媒簡介 24 2-5-4影響光催化反應的因素簡介 27 2-6材料回顧 34 2-6-1鎳酸鑭 (LaNiO3)的結構與性質探討 36 2-7材料的製備 41 2-7-1固相合成法 41 2-7-2水熱法 42 2-7-3溶膠-凝膠法 43 第三章 實驗步驟與方法 46 3-1實驗步驟 46 3-2實驗藥品 50 3-3性質分析與儀器介紹 51 3-3-1 X光繞射儀 ( X-Ray Diffractometer, XRD) 51 3-3-2全譜分析軟體 (Total Pattern Analysis Solution, TOPAS) 53 3-3-3掃描式電子顯微鏡 (SEM) 56 3-3-4席貝克係數量測系統 57 3-3-5電阻率變溫量測系統 58 3-3-6太陽光模擬器 59 3-3-7 成分及化學鍵結分析 (XPS) 60 第四章 結果與討論 61 4-1不同合成法合成LaNiO3之比較 61 4-1-1水熱法合成LaNiO3之XRD成相分析 61 4-1-2固相燒結法合成LaNiO3之XRD成相分析 62 4-1-3溶膠-凝膠法合成LaNiO3之XRD成相分析 64 4-2 La1-xEuxNiO3 (x=0~ 0.5)之結構分析 65 4-2-1 La1-xEuxNiO3 (x=0~ 0.5) 之XRD成相分析 65 4-2-2 La1-xEuxNiO3 (x=0~ 0.5) 之晶粒大小變化 66 4-2-3 La1-xEuxNiO3 (x=0~ 0.5) 之晶格常數與晶格位置變化 68 4-2-4 La1-xEuxNiO3 (x=0~ 0.5) 之鍵長、鍵角變化 73 4-2-5 La1-xEuxNiO3 (x=0~ 0.5) 之表面形貌與密度分析 77 4-2-6 La1-xEuxNiO3 (x=0.1~ 0.5) 之元素成分分析 79 4-2-7 La1-xEuxNiO3 (x=0.0 & 0.5) 之成分及化學鍵結分析 80 4-3 LaNiO3-δ (δ= 0、0.3、0.5) 之結構分析 82 4-3-1 LaNiO3-δ (δ= 0、0.3、0.5) 之XRD分析 82 4-3-2 LaNiO3-δ (δ= 0、0.3、0.5) 之晶粒大小變化 83 4-3-3 LaNiO3-δ (δ= 0、0.3、0.5) 之晶格常數變化 84 4-3-4 LaNiO3-δ (δ= 0、0.3、0.5) 之成分及化學鍵結分析 86 4-4 La1-xEuxNiO3 (x=0~ 0.5) 之性質量測 89 4-4-1 La1-xEuxNiO3 (x=0~ 0.5) 之席貝克係數量測 89 4-4-2 La1-xEuxNiO3 (x=0~ 0.5) 之電性量測 91 4-4-3 La1-xEuxNiO3 (x=0~ 0.5) 之功率因子計算 92 4-5 LaNiO3-δ (δ= 0、0.3、0.5) 之性質量測 93 4-5-1 LaNiO3-δ (δ= 0、0.3、0.5) 之席貝克係數量測 93 4-5-2 LaNiO3-δ (δ= 0、0.3、0.5) 之電性量測 94 4-5-3 LaNiO3-δ (δ= 0、0.3、0.5) 之功率因子計算 97 4-6 LaNiO3-δ (δ= 0、0.3、0.5) 於亞甲基藍之光降解表現 97 第五章 結論 100 參考文獻 102

    1. Bull, S.R., Renewable energy today and tomorrow. Proceedings of the IEEE, 2001. 89(8): p. 1216-1226.
    2. Harris, T.M., J.P. Devkota, V. Khanna, P.L. Eranki, and A.E. Landis, Logistic growth curve modeling of US energy production and consumption. Renewable and Sustainable Energy Reviews, 2018. 96: p. 46-57.
    3. Ginley, D.S. and D. Cahen, Fundamentals of materials for energy and environmental sustainability. 2011: Cambridge university press.
    4. Macia, E., Thermoelectric materials: advances and applications. 2015: CRC Press.
    5. Maekawa, S., T. Tohyama, S.E. Barnes, S. Ishihara, W. Koshibae, and G. Khaliullin, Physics of transition metal oxides. Vol. 144. 2013: Springer Science & Business Media.
    6. Uchida, K., S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, and E. Saitoh, Observation of the spin Seebeck effect. Nature, 2008. 455(7214): p. 778-781.
    7. Bakker, F., A. Slachter, J.-P. Adam, and B. Van Wees, Interplay of Peltier and Seebeck effects in nanoscale nonlocal spin valves. Physical review letters, 2010. 105(13): p. 136601.
    8. Thomson, W., XXXVI.—An Account of Carnot's Theory of the Motive Power of Heat;* with Numerical Results deduced from Regnault's Experiments on Steam. Earth and Environmental Science Transactions of The Royal Society of Edinburgh, 1849. 16(5): p. 541-574.
    9. Thomson, W., 4. on a mechanical theory of thermo-electric currents. Proceedings of the Royal society of Edinburgh, 1857. 3: p. 91-98.
    10. Thomson, W., I. Account of researches in thermo-electricity. Proceedings of the Royal Society of London, 1856(7): p. 49-58.
    11. Thomson, W., XIX. On the electro-dynamic qualities of metals:—Effects of magnetization on the electric conductivity of nickel and of iron. Proceedings of the Royal Society of London, 1857(8): p. 546-550.
    12. 王詩雯and 林志忠, 無序金鈀合金厚膜之熱電勢研究. 2007.
    13. Caillat, T., J.-P. Fleurial, and A. Borshchevsky, Preparation and thermoelectric properties of semiconducting Zn4Sb3. Journal of Physics and Chemistry of Solids, 1997. 58(7): p. 1119-1125.
    14. Jiles, D.C., Introduction to the electronic properties of materials. 2001: CRC Press.
    15. Fardy, M., A.I. Hochbaum, J. Goldberger, M.M. Zhang, and P. Yang, Synthesis and thermoelectrical characterization of lead chalcogenide nanowires. Advanced Materials, 2007. 19(19): p. 3047-3051.
    16. Bin, Z., L. Jin-Le, L. Yao-Chun, D. Jing-Xuan, L. Yuan-Hua, and N. Ce-Wen, Research progress of oxides thermoelectric materials. Journal of Inorganic Materials, 2014. 29(3): p. 237-244.
    17. Li, J.-F., W.-S. Liu, L.-D. Zhao, and M. Zhou, High-performance nanostructured thermoelectric materials. NPG Asia Materials, 2010. 2(4): p. 152-158.
    18. Gorskyi, P., Power factor for layered thermoelectric materials with a closed Fermi surface in a quantizing magnetic field. arXiv preprint arXiv:1304.8054, 2013.
    19. Ohtaki, M., Oxide thermoelectric materials for heat-to-electricity direct energy conversion. Kyushu University Global COE Program Novel Carbon Resources Sciences Newsletter, 2010. 3.
    20. Snyder, G.J. and E.S. Toberer, Complex thermoelectric materials. Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group, 2011: p. 101-110.
    21. Arjmand, M. and S. Sadeghi, Nitrogen-Doped Carbon Nanotube/Polymer Nanocomposites Towards Thermoelectric Applications. Thermoelectrics for Power Generation-A Look at Trends in the Technology, 2016.
    22. Rajeshwar, K., Fundamentals of semiconductor electrochemistry and photoelectrochemistry. Encyclopedia of electrochemistry, 2007. 6: p. 1-53.
    23. Fujishima, A. and K. Honda, Electrochemical photolysis of water at a semiconductor electrode. nature, 1972. 238(5358): p. 37-38.
    24. Carey, J.H., J. Lawrence, and H.M. Tosine, Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions. Bulletin of environmental contamination and toxicology, 1976. 16(6): p. 697-701.
    25. Pruden, A.L. and D.F. Ollis, Photoassisted heterogeneous catalysis: the degradation of trichloroethylene in water. Journal of catalysis, 1983. 82(2): p. 404-417.
    26. Chen, C., W. Ma, and J. Zhao, Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chemical Society Reviews, 2010. 39(11): p. 4206-4219.
    27. Liu, S., J. Yu, and M. Jaroniec, Tunable photocatalytic selectivity of hollow TiO2 microspheres composed of anatase polyhedra with exposed {001} facets. Journal of the American Chemical Society, 2010. 132(34): p. 11914-11916.
    28. Schneider, J., M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, and D.W. Bahnemann, Understanding TiO2 photocatalysis: mechanisms and materials. Chemical reviews, 2014. 114(19): p. 9919-9986.
    29. Low, J., J. Yu, M. Jaroniec, S. Wageh, and A.A. Al‐Ghamdi, Heterojunction photocatalysts. Advanced materials, 2017. 29(20): p. 1601694.
    30. Deutsch, T.G., High-Efficiency Tandem Absorbers for Economical Solar Hydrogen Production. 2019, National Renewable Energy Lab.(NREL), Golden, CO (United States).
    31. Linsebigler, A.L., G. Lu, and J.T. Yates Jr, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chemical reviews, 1995. 95(3): p. 735-758.
    32. Kudo, A., Recent progress in the development of visible light-driven powdered photocatalysts for water splitting. International journal of hydrogen energy, 2007. 32(14): p. 2673-2678.
    33. Luo, M., W. Yao, C. Huang, Q. Wu, and Q. Xu, Shape effects of Pt nanoparticles on hydrogen production via Pt/CdS photocatalysts under visible light. Journal of Materials Chemistry A, 2015. 3(26): p. 13884-13891.
    34. Oh, J.Y., J.-M. Yu, S.R. Chowdhury, T.I. Lee, and M. Misra, Significant impact of Pd nanoparticle and CdS nanolayer of Pd@ CdS@ ZnO core-shell nanorods on enhancing catalytic, photoelectrochemical and photocurrent generation activity. Electrochimica Acta, 2019. 298: p. 694-703.
    35. Cai, T., L. Wang, Y. Liu, S. Zhang, W. Dong, H. Chen, X. Yi, J. Yuan, X. Xia, and C. Liu, Ag3PO4/Ti3C2 MXene interface materials as a Schottky catalyst with enhanced photocatalytic activities and anti-photocorrosion performance. Applied Catalysis B: Environmental, 2018. 239: p. 545-554.
    36. Zhang, H., Z. Luo, Y. Liu, and Y. Jiang, Noble-metal-free Ni3C as co-catalyst on LaNiO3 with enhanced photocatalytic activity. Applied Catalysis B: Environmental, 2020. 277: p. 119166.
    37. Wang, W., J. Fang, S. Shao, M. Lai, and C. Lu, Compact and uniform TiO2@ g-C3N4 core-shell quantum heterojunction for photocatalytic degradation of tetracycline antibiotics. Applied Catalysis B: Environmental, 2017. 217: p. 57-64.
    38. Maeda, K. and K. Domen, New non-oxide photocatalysts designed for overall water splitting under visible light. The Journal of Physical Chemistry C, 2007. 111(22): p. 7851-7861.
    39. Zou, J.-P., L.-Z. Zhang, S.-L. Luo, L.-H. Leng, X.-B. Luo, M.-J. Zhang, Y. Luo, and G.-C. Guo, Preparation and photocatalytic activities of two new Zn-doped SrTiO3 and BaTiO3 photocatalysts for hydrogen production from water without cocatalysts loading. international journal of hydrogen energy, 2012. 37(22): p. 17068-17077.
    40. Konta, R., T. Ishii, H. Kato, and A. Kudo, Photocatalytic activities of noble metal ion doped SrTiO3 under visible light irradiation. The Journal of Physical Chemistry B, 2004. 108(26): p. 8992-8995.
    41. Kudo, A., R. Niishiro, A. Iwase, and H. Kato, Effects of doping of metal cations on morphology, activity, and visible light response of photocatalysts. Chemical Physics, 2007. 339(1-3): p. 104-110.
    42. Wang, W., M.O. Tadé, and Z. Shao, Research progress of perovskite materials in photocatalysis-and photovoltaics-related energy conversion and environmental treatment. Chemical Society Reviews, 2015. 44(15): p. 5371-5408.
    43. Lin, Y., C. Norman, D. Srivastava, F. Azough, L. Wang, M. Robbins, K. Simpson, R. Freer, and I.A. Kinloch, Thermoelectric power generation from lanthanum strontium titanium oxide at room temperature through the addition of graphene. ACS applied materials & interfaces, 2015. 7(29): p. 15898-15908.
    44. Han, L., D.V. Christensen, A. Bhowmik, S.B. Simonsen, L. Hung, E. Abdellahi, Y. Chen, N. Nong, S. Linderoth, and N. Pryds, Scandium-doped zinc cadmium oxide as a new stable n-type oxide thermoelectric material. Journal of Materials Chemistry A, 2016. 4(31): p. 12221-12231.
    45. Ishizawa, M., Y. Yasuzato, H. Fujishiro, T. Naito, H. Katsui, and T. Goto, Oxidation states and thermoelectric properties of BiCuSeO bulks fabricated under Bi or Se deficiencies in the nominal composition. Journal of Applied Physics, 2018. 123(24): p. 245104.
    46. Zakharchuk, K.V., D.M. Tobaldi, X. Xiao, W. Xie, S.M. Mikhalev, J.F. Martins, J.R. Frade, A. Weidenkaff, and A.V. Kovalevsky, Synergistic effects of zirconium-and aluminum co-doping on the thermoelectric performance of zinc oxide. Journal of the European Ceramic Society, 2019. 39(4): p. 1222-1229.
    47. Rahim, W., J.M. Skelton, and D.O. Scanlon, α-Bi 2 Sn 2 O 7: A potential room temperature n-type oxide thermoelectric. Journal of Materials Chemistry A, 2020. 8(32): p. 16405-16420.
    48. Razmara, Z., M.S. Abdelbaky, and S. García‐Granda, Synthesis and crystal structure of a new copper (II) complex, designed to produce efficient successor of Cu2O, toward synergy of adsorption and photodegradation of MB. Applied Organometallic Chemistry, 2020. 34(6): p. e5639.
    49. Lv, B., X. Feng, X. Wu, X. Wang, X. Zou, H. Wang, and F. Zhang, Vapor deposition of g-C3N4 on TiO2 nanosquares for efficient photodegradation of MB and Cr6+ under visible light. Diamond and Related Materials, 2020. 110: p. 108132.
    50. Singh, S.P., U.M. Tripathi, A.K. Verma, A.K. Jaiswal, P.K. Dhawan, and R.R. Yadav, Enhancement of thermal conductivity and ultrasonic properties by incorporating CdS nanoparticles to PVA nanofluids. Zeitschrift für Naturforschung A, 2021.
    51. Iqbal, S., I. Bibi, S. Ata, S. Kamal, S.M. Ibrahim, and M. Iqbal, Gd and Co-substituted LaNiO3 and their nanocomposites with r-GO for photocatalytic applications. Diamond and Related Materials, 2020. 110: p. 108119.
    52. Ghorai, K., A. Panda, A. Hossain, M. Bhattacharjee, M. Chakraborty, S.K. Bhattacharya, B. Show, A. Sarkar, P. Bera, and H. Kim, LaNiO3/g-C3N4 nanocomposite: An efficient Z-scheme photocatalyst for wastewater treatment using direct sunlight. Journal of Rare Earths, 2021.
    53. Sun, J., G. Rao, and J. Liang, Crystal structure and electronic transport property of perovskite manganese oxides with a fixed tolerance factor. Applied physics letters, 1997. 70(14): p. 1900-1902.
    54. Torrance, J., P. Lacorre, A. Nazzal, E. Ansaldo, and C. Niedermayer, Systematic study of insulator-metal transitions in perovskites R NiO 3 (R= Pr, Nd, Sm, Eu) due to closing of charge-transfer gap. Physical Review B, 1992. 45(14): p. 8209.
    55. Moriga, T., O. Usaka, I. Nakabayashi, T. Kinouchi, S. Kikkawa, and F. Kanamaru, Characterization of oxygen-deficient phases appearing in reduction of the perovskite-type LaNiO3 to La2Ni2O5. Solid State Ionics, 1995. 79: p. 252-255.
    56. Sanchez, R., M. Causa, A. Caneiro, A. Butera, M. Vallet-Regi, M. Sayagues, J. González-Calbet, F. Garcia-Sanz, and J. Rivas, Metal-insulator transition in oxygen-deficient LaNiO 3− x perovskites. Physical review B, 1996. 54(23): p. 16574.
    57. Qiao, L. and X. Bi, Direct observation of Ni3+ and Ni2+ in correlated LaNiO3− δ films. EPL (Europhysics Letters), 2011. 93(5): p. 57002.
    58. Zinkevich, M. and F. Aldinger, Thermodynamic analysis of the ternary La–Ni–O system. Journal of alloys and compounds, 2004. 375(1-2): p. 147-161.
    59. Rahaman, M.N., Ceramic processing. 2017: CRC press.
    60. Walton, R.I., Subcritical solvothermal synthesis of condensed inorganic materials. Chemical Society Reviews, 2002. 31(4): p. 230-238.

    無法下載圖示 校內:2027-01-18公開
    校外:2027-01-18公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE