簡易檢索 / 詳目顯示

研究生: 黃聖翔
Huang, Sheng-Hsiang
論文名稱: 電化學交流阻抗頻譜於氧化鎳/鈣鈦礦異質接合太陽能元件之研究
Electrochemical Impedance Spectroscopy Analysis of Nickel Oxide/Perovskite Heterojunction Solar Cells
指導教授: 陳昭宇
Chen, Peter
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 111
中文關鍵詞: 氧化鎳鈣鈦礦太陽能電池交流阻抗頻譜
外文關鍵詞: Nickel oxide, Perovskite, Solar cell, Impedance spectroscopy
相關次數: 點閱:133下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究利用電化學交流阻抗頻譜探討使用無機氧化鎳作為p-type選擇性接觸電極之氧化鎳/鈣鈦礦異質接合太陽能電池之工作機制,本研究團隊其他成員先前已利用光激發螢光(photoluminescence)頻譜與光致激發暫態吸收頻譜(photo-induced transient absorption spectroscopy, PIA)證實氧化鎳為一電洞傳輸材料。

      本文欲探討此氧化鎳電洞傳輸材料層於氧化鎳/鈣鈦礦異質接合元件工作狀態下所扮演之角色,藉由量測此元件之電化學交流阻抗頻譜,並利用p-i-n等效電路作曲線擬合,得到元件不同施加偏壓下之阻抗,並計算出鈣鈦礦層與界面間之載子復合電阻與化學電容,再利用此結果與使用其他選擇性接觸材料之鈣鈦礦元件作比對分析。

      分析結果顯示於元件工作狀態下,濺鍍之平板氧化鎳薄膜層所扮演之角色為電子阻擋層,能有效抑制載子復合,提高元件之開路電壓。同時,交流阻抗頻譜分析顯示元件工作狀態下有載子累積於多孔氧化鎳薄膜層,因此多孔氧化鎳薄膜確實為一電洞傳輸材料,在元件中同樣可見此特性表現。

    In this study, we employee the electrochemical impedance spectroscopy method to analysis the mesoscopic NiO/perovskite/PCBM heterojunction photovoltaic device. The IS measurement results verified that the nanostructured nickel oxide is an p-type material, not only can be a scaffold allowing more perovskite loading but also be a hole transport material. This fact has important implication for the future optimization of perovskite solar cells. The NiO inorganic p-type hole transport material also provide extensive device architecture for further development of perovskite solar cells in the future.

    摘要 I Extended Abstract II 誌謝 X 目錄 XI 圖目錄 XV 表目錄 XXII 第一章 緒論 1 1.1太陽能電池發展過程 1 1.2 太陽能電池種類 7 1.2.1 矽太陽能電池 7 1.2.2 有機薄膜太陽能電池 7 1.2.3 染料敏化太陽能電池 9 1.3太陽能電池量測技術與原理 14 1.3.1空氣質量(Air Mass)與太陽能光譜(Solar Spectrum) 14 1.3.2 電流電壓特性曲線(J-V Curve)量測與原理 16 1.3.3 量子轉換效率(Quantum Efficiency, QE) 17 第二章 文獻回顧 20 2.1 介關太陽能電池 20 2.1.1 有機無機混成之鈣鈦礦材料 20 2.1.2 有機無機混成之鈣鈦礦太陽能電池 22 2.2 交流阻抗頻譜原理與其在太陽能敏化電池中的應用 36 2.2.1 交流阻抗頻譜分析方法簡介 36 2.2.2 交流阻抗頻譜的基礎原理 38 2.2.3 各單一元件(RLC)與串並聯電路在Nyquist圖譜上之表現 42 2.2.4 交流阻抗頻譜在染料敏化太陽能電池中之應用 49 2.2.4.1 界面特性分析 51 2.2.4.2 化學電容(Chemical capacitance) 55 2.2.4.3 載子複合電組(Recombination resistance) 57 2.2.4.4 擴散現象(Diffusion) 59 2.2.4.5 考量電解液擴散與載子複合之等效電路 63 2.2.5 鈣鈦礦元件交流阻抗頻譜分析 67 第三章 元件製備與參數分析 71 3.1 元件製備 71 3.1.1 多孔氧化鎳/鈣鈦礦異質接合太陽能元件之製備 71 3.1.2 多孔氧化鎳/鈣鈦礦異質接合太陽能元件之製備 74 第四章 利用交流阻抗頻譜分析比較不同類別之鈣鈦礦太陽能元件 77 4.1 交流阻抗頻譜分析平板多孔氧化鎳/鈣鈦礦異質接合太陽能元件 77 4.1.1 元件結構與工作機制 77 4.1.2 氧化鎳/鈣鈦礦異質接合太陽能元件之等效電路 79 4.1.3 交流阻抗頻譜分析氧化鎳/鈣鈦礦異質接合太陽能元件--- 元件結構 : ITO/NiO(f)/NiO(nc)/PSK/PCBM/BCP/Al 82 4.2 電化學交流阻抗頻譜分析PEDOT之鈣鈦礦太陽能元件--- 元件結構:ITO/PEDOT/PSK/PCBM/BCP/Al 90 4.3 電化學交流阻抗頻譜分析比較不同種類之鈣鈦礦元件 92 4.3.1交流阻抗頻譜分析探討多孔氧化鎳NiO(nc)於元件中所扮演之角色 92 4.3.2 交流阻抗頻譜分析探討平板氧化鎳NiO(f)、多孔氧化鎳NiO(nc)於元件中所扮演之角色 94 第五章 結論與未來發展 106 第六章 參考文獻 108

    1. Becquerel, E.,Compt. Rend., 1839.9: p.145.
    2. Adams, W.G., R.E. Day, and P. Roy, Soc. London, 1877. A25:P. 113
    3. M. Gräztel,R. A. J. Janssen, D. B. Mitzi, and E. H. Sargent, Nature, 2012, 488, 304.
    4. A.J. NoZik, Annu, Rev, Phys. Chem., 1978, 29, 189.
    5. M. Gräztel, Nature, 2001, 414, 338.
    6. H. Gerischer and H. Tributsch, Ber. Bunsenges. Phys. Chem., 1968, 72, 437
    7. H. Gerischer, Photochem. Photobiol., 1972, 16, 243.
    8. R. Memming, Photochem. Photobiol., 1972, 16, 325.
    9. A. Fujishima, T. Watanabe, O. Tatsuoki, and K. Honda, Chem. Lett., 1975, 4, 13.
    10. H. Tsubomura, M.Matsumura, Y. Nomura, and T. Amamiya, Nature, 1976, 261, 402.
    11. T. Osa and M. Fujihira, Nature, 1976, 264, 349.
    12. T. Miyasaka, J. Phys. Chem. Lett., 2011, 2, 262
    13. B. O’Regan and M. Gräztel, Nature, 1991, 353, 737.
    14. A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chamdiran, Md. K. Nazeeruddin, E. W. G. Diau, C. Y. Yeh, S. M. Zakeeruddin, and M. Gräztel, Science, 2011, 334, 629.
    15. U. Bach, Ph.D. Thesis EPFL, 2000.
    16. U. Bach, D.Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, and M. Gräztel, Nature, 1998, 395, 583.
    17. Zhao J, W. A., Green M. A., Ferrazza F., Novel 19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells. 1998. 73: p. 1991-1993.
    18. Green, M. A., et al., Solar cell efficiency tables (version 37). Progress in photovoltaics: Research and Applications, 2011. 19(1): p. 84-92.
    19. Schultz, O., S. W. Glunz, and G. P. Willeke, SHORT COMMUNICATION : ACCELERATED PUBLICATION: Multicrystalline silicon solar cells exceeding 20% efficiency. Progress in Photovoltaics: Research and Applications, 2004. 12(7): p. 553-558
    20. Peumans, P. and S. R. Forrest, Applied Physics Letters, 2001. 79(1) : p. 126
    21. Wanli Ma, C. Y., Xiong Gong, Kwanghee Lee, and Alan J. Hegger, Adv. Funct. Mater., 2005. 15: p. 1617-1622
    22. M. Gräztel., Solar Energy Conversion by Dte-Sensitized Photovoltaic Cells. Inorganic Chemistry, 2005. 44(20): p. 6841-6851.
    23. Zhong Sheng Wang, M. Y., Kazuhiro Sayama, and Hideki Sugihara, Chem. Mater., 2006. 18: p.2912-2916.
    24. Burschka, J., et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013. 499(7458): p.316-9
    25. J. Burschka, A. Dualeh, F. Kessler, E. Baranoff, N. –L. Cevey-Ha, C. Yi, M. K. Nazeeruddin, and M. Gräztel, J. Am. Chem. Soc, 2011, 133,18402.
    26. I.-K Ding, T. Nicolas, J. Brillet, B. E. Hardin, E. H. Smith, S. J. Rosenthal, F. Sauvage, M. Gräztel, and M. D. McGehee, Adv. Funct. Mater., 2009, 19, 2431.
    27. J. -H Yum, P. Chem, M. Gräztel, and M. K. Nazeeruddin, ChemSusChem, 2008, 1, 699.
    28. H.-S. Kim, C.-R Lee, J.-H Im, K.-B Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H Yum, J. E. Moser, M, Gräztel, and N.-G. Park, Sci. Rep., 2013,2, 591.
    29. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, Science, 2012, 338, 643.
    30. 陳頤辰, 郭昭顯, 陳俊亨, 工研院太陽光電研究中心, 工業材料雜誌258期。
    31. http://www.oe-chemicals.com/, Organic Electronic Chemicals, LLC.]
    32. J. G. Bednorz and K. A. Muller, Z. Phys. B-Condensed Matter, 1984, 64, 189.
    33. R. J Cava, B, Batlogg, J. J. Krajewski, R. Farrow, L. W. Rupp, A. E. White, K. Short, W. F. Peck, and T. Komentani, Nature, 1988, 332, 814.
    34. R. J. Cave, B. Batlogg, J. J. Krajewski, R. Farrow, L. W. Rupp, A. E. White, K. Short, W. F. Peck, and T, Komentani, Nature, 1988, 332, 814.
    35. D. B. Mitzi, S. Wang, C. A. Field, C. A. Chess, and A. M. Guloy, Science, 1995, 267, 1473.
    36. D. B. Mitzi, S. Wang, C. A. Field, Z. Schlesinger, and R. B. Laibowitz, J. of Solid State Chemistry, 1995, 114, 159-163
    37. V. Chakravarthy and A. M. Guloy Chem. Commun., 1997, 0, 697.
    38. G. C.Papavassillou, Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, 1996, 286, 231.
    39. D. B. Mitzi, K. Chondroudis, and C.R. Kagan, Inorg. Chem,., 1999, 38, 6246-6256.
    40. D. B. Mitzi, Chem. Mater., 1996, 8, 791.
    41. T. Ishilara, J. Takahashi, and T. Goto, Solid State Commun., 1989, 69, 933.
    42. T. Ishilara, J. Takahashi, and T. Goto, Solid State Commun., 1990, 42, 11099.
    43. T. Kondo, S. Iwamoto, S. Hayase, K. Tanaka, J. Ishi, M. Mizunno, K. Ema, and R. Ito, Solid State Commun., 1998, 105, 503.
    44. K. Chondroudis and D. B. Mitzi, Chem. Mater., 1999, 11, 3028.
    45. C. R. Kagan, D. B. Mitzi, and C. D. Dimitrakopoulos, Science, 1999, 286, 945.
    46. T. Ishihara, J. of Lumin., 1994, 60-161, 269.
    47. I. B. Koutselas, L. Ducasse, and G.C. Papavassilliou, J.Phys.: Condens. Matter, 1996, 8, 1217.
    48. T. Ishihara, J. of Lumin., 1994, 60-161, 269.
    49. M. Hirasawa, T. Ishihara, T. Goto, K. Uchida, and N. Miura, Physica B, 1994, 201, 427.
    50. M. Hurasawa, T. Ishihara, and T.Goto, J. Phys Soc. Japan, 1994, 63, 3870.
    51. K. Tanaka, T. Takahashi, T. Ban, T.Kondo, K. Uchida, and N. Miura, Solid State Commun., 2003, 127, 619.
    52. D. B. Mitzi, K. Chondroudis, and C.R. Kagan, IBM J. Res. And Dev., 2001, 45, 29
    53. V. M. Agranovich, Yu. N. Gartstein, and M. Litinskaya, Chem. Rev., 2011, 111, 5179
    54. Z. Han, H.-S. Nguyen, F. Boitier, Y, Wei, K. Abdel-BAki, J.-S. Jauret, J. Bloch, S. Bluchoule, and E. Deleporte, Opt. Lett., 2012, 37, 5061.
    55. R. Vogel, P. Hoyer, and H. Weller, J. Phys. Chem. 1994, 98, 3183.
    56. P.B. Kamat, J. Phys. Chem. C, 2008, 112, 18737
    57. I. Mora Sero and J. Bisquert, J. Phys. Chem. Lett., 2010, 1, 3046
    58. A. Zaban, O.I. Micic, B.A. Gregg, and A. J. Nozik and, Langmuir, 1998, 14, 3153.
    59. R.Vogel, K. Pohl, and H. Weller, Chem. Phys. Lett., 1990, 174, 241.
    60. H. J. Lee, J.-H. Tum, H. C. Leventis, S. M. Zakeeruddin, S. A. Haque, P. Chen, S. I. Seok, M. Gra tzel, and Md. K. Nazeeruddin, J. Phys. Chem. C., 2008, 112, 11600.
    61. R. Plass, S. Pelet, J. Kruger, and U. Bach M. Gratzel, J. Phys. Chem. B, 2002, 106, 7578
    62. J. A. Chang, J. H. Rhee, S. H. Im, Y. H. Lee, H.-J. Kim, S. I. Seok, Md. K. Nazeeruddin, and M. Gratzel, Nano Lett., 2010, 10, 2609
    63. H. J. Lee, J.-H. Yum. H.C. Leventis, S. M. Zakeeruddin, S. A. Haque, P. Chen, S. I. Seok, M.Gratzel, M. K. Nazeeruddin, J. Phys. Chem. C, 2008, 112, 11600.
    64. Y.-L. Lee and Y.-S. Lo, Adv. Funct. Mater., 2009, 19, 604.
    65. H. J. Lee, M. Wang, P. Chen, D. R. Gamelin, S. M. Zakeeruddin, M. Gratzel, and M. K, Nazerruddin, Nano Lett., 2009, 9, 4221.
    66. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc., 2009, 131, 6050
    67. J.- H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park, Nanoscale, 2011, 3, 4088
    68. L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, Md. K. Nazeeruddin, and M. Gratzel, J. Am. Chem. Soc., 2012, 134, 17396.
    69. I. Chung, B. Lee, J. He, R. P. H. Chang, and M. G. Kanatzidis, Nature, 2012, 485, 486.
    70. Gonzalez-Pedro, V., Juarez-Perez, E.J., Arsyad, W-S., Barea, E.M., Fabregat-Santiago, F., Mora-Sero, I., and Bisquert, J., General working principles of CH3NH3PbX3 perovskite solar cells. Nano Letter, DOI: 10.1021/nl404252e (2014)
    71. H. –S. Kim, I. Mora-Sero, V. Gonzalez-Pedreo, F. Fabregat-Santiago, E. J. Juarez-Perez, N. –G. Park, J. Bisquert, Nat. Communications 2013, DOI: 10.1038/ncomms3242.

    下載圖示 校內:2019-09-02公開
    校外:2019-09-02公開
    QR CODE