簡易檢索 / 詳目顯示

研究生: 楊志雄
Yang, Chi-Shiung
論文名稱: 具鋸齒切刃銑刀之加工特性分析
Modeling and Analysis of Machining Process for Serrated End Mills
指導教授: 王俊志
Wang, J-J Junz
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 112
中文關鍵詞: 鋸齒切刃端銑刀
外文關鍵詞: serrated end mill
相關次數: 點閱:43下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文建立具鋸齒切刃端銑刀(serrated end mill) 的銑削力模式,並探討方波刃與正弦刃端銑刀的刀刃幾何參數對銑削加工特性的影響。首先分析具鋸齒刀刃幾何參數對切屑負載分佈及變化的影響,當為正弦曲線切刃端銑刀時,其刀刃幾何曲線波幅與每刃齒進給比較大時,則在任一軸向高度位置皆僅有一切削點參與切削,它的切削區域皆視刀刃幾何、刃數、刀刃螺旋角、正弦刀刃曲線波長、刀具半徑、切削徑深與切削軸深有關,而切屑厚度僅是刀刃幾何曲線波幅與每刃齒進比hs和徑向切深與刀具直徑比hr的函數,當hs較大時,切屑厚度為一般刀刃端銑刀的N倍,有效軸深為一般端銑刀的1/N倍。當為方波刃端銑刀則由切屑負載分析,方波刃端銑刀的切屑厚度為一般刀刃端銑刀的N/2倍,有效軸深為一般端銑刀的2/N倍,其切屑負載分佈在任意軸向高度位置均有N/2切削點參與切削。
      由以上切屑負載的分析為基礎,經由刀刃幾何軸向切削視窗函數加諸於切削函數中利用捲積理論得到角度域銑削力,接著由傅立葉分析獲得頻域銑削力的模式。並且討論具鋸齒刀刃端銑刀銑削力在角度域與頻域的特性,以及刀刃幾何參數對銑削特性(有效切削軸深、切屑負載分佈、銑削穩定性、表面粗糙度、切削動力消耗)的影響及量化數值並與一般刀刃端銑刀比較,經由數值模擬以及實驗結果驗證了本文所提之銑削力模式及其應用的特性。

      This paper presents analytical force models for a general helical serrated end mill with sinusoidal and square edges profile in both the angle and frequency domains. Based on the numerical chip load model, Chip load distribution is analyzed with respect to tool geometric parameters. The proposed chip load model describes the influence of flute geometry, number of cutter flutes, flute helix angle, wavelength of sinusoidal edge, cutter radius. Sinusoidal-edge chip thickness is N times that of a regular end mill, if the ratio of wave amplitude to the feed per tooth hs is large, that value of hs required to satiable is dependent on the number of the flute and the ratio of the radial depth of cut to the cutter diameter hr. Square-edge chip thickness is N/2 times that of a regular end mill by chip load of cutting edges. They are shown that under normal feed conditions that there exist only one and two cutting point at any axial position for an N-flute roughing end mill with its chip thickness N and N/2 times that of a regular end mill, while the effective axial depth of cut are only 1/Nth and 2Nth that of a regular end mill. Based on the chip load model, the analytical force model is subsequently established through convolution integration of the elemental cutting function with the cutting edge geometry function in the angular domain, followed by Fourier analysis to obtain the frequency domain force model. Distinctive features of the chip load distribution, vibration energy, surface rounghness and cutting energy for a roughing end mill are illustrated and compared with a regular end mill in the frequency as well as in the angular domain. Numerical simulation and experimental results are carried out to demonstrate the force characteristics and verify the force model.

    中文摘要 I 英文摘要 III 誌謝 V 總目錄 VII 表目錄 IX 圖目錄 X 符號說明 XII 第一章 緒論 1 1.1前言 1 1.2研究動機 4 第二章 切屑負載分析 6 2.1前言 6 2.2切屑負載運動分析 7 2.3切削區域 11 2.4正常化切屑厚度在b-q平面上的分析 13 2.5切屑重量與平均切屑厚度分析 19 第三章 銑削力模式建立及其應用 35 3.1前言 35 3.2具鋸齒切刃之刀刃幾何 36 3.3在角度域的銑削力分析 41 3.4在頻率域的銑削力分析 47 3.5平均力與比切削係數的計算 50 3.6模式驗證及其應用 59 3.7結語 62 第四章 具鋸齒切刃銑刀加工特性分析 76 4.1前言 76 4.2有效切削軸深 76 4.3切屑負載分佈 78 4.4振動能量 79 4.5表面粗糙度與刀刃幾何的關係 82 4.6切削動力消耗 85 4.7結語 91 第五章 結論與建議 103 5.1結論 103 5.2建議 106

    1. Altintas Y., “Direct Adaptive Control of End Milling Process,” International Journal of Machine and Tools Manufacture 34, pp.461-472, 2001.
    2. Altintas Y., “Prediction of Cutting Forces and Tool Breakage in Milling From Feed Drive Current Measurements,” ASME Journal of Engineering for Industry 114, pp. 386-392, 1992.
    3. Amarego E.J.A., and Desphande N.P., “Computerized Predictive Cutting Models for Forces in End Milling Including Eccentricity Effects,” CIRP Annals, 38, pp.45-49, 1989.
    4. Boothroyd, G., “Fundamentals of Metal Machining and Machine Tools,” Scripta Book Co., Washington D.C., 1975.
    5. Budak E., Altintas Y., and Armarego E. J. A., “Prediction of Milling Force Coefficients from Orthogonal Cutting Data,” Transactions of ASME, 118, pp. 216-224, 1996.
    6. Campomanes M.L., “Kinematics and Dynamics of Milling with Roughing End Mill,” Metal Cutting and High Speed Machining, Kluwer Academic/Lpenum Publishers, 2002.
    7. Chiang S.T., Liu D.I., Lee A., and Chieng W., “Adaptive Control Optimization in End Milling Using Neural Networks,” International Journal of Machines and Tools Manufacture 34, pp.637-660, 1995.
    8. Endres W.J., Devor R.E., and Kapoor S.G., “A Dual-Mechanism Approach to the Prediction of Machining Forces: Part 1: Model Development and Calibration,” ASME Manuf. Sci. Eng. PED 64, pp.563-576, 1993.
    9. Fu H.J., DeVor R.E., and S.I. Kapoor, “A mechanistic model for the prediction of the force system in face milling operations,” ASME Journal of Engineering for Industry, 106, pp. 81-88, 1984.
    10. Gu F.M., Kapoor S.G., DeVor R.E., and Bandyopadhyay P., “A Cutting Force Model for Face Milling with a Step Cutter,” Transactions of NAMRI/SME 20, pp. 361-367, 1992.
    11. Kin H.S., and Ehmann K.F., “A Cutting Force Model for Face Milling Operations,” International Journal of Machine Tools & Manufacture, 33, pp. 651-673, 1993.
    12. Kline W.A., DeVor R.E., LIndberg J.R., “The Prediction of Cutting Forces in End Milling with Application to Cornering Cuts,” International Journal of Machine Tool Design and Research, 22, pp. 7-22, 1982.
    13. Kline W.A. and DeVor R.E., “The Effect of Runout on Cutting Geometry and Forces in End Milling,” International Journal of Machine Tool Design and Research, 23, pp. 123-140, 1983.
    14. Koenigsberger, F., Sabberwal, A. J. P., “An Investigation into the Cutting Force Pulsations During Milling Operations,” International Journal of Machine Tool Design and Research, 1, pp.15-33, 1961.
    15. Kuhl M.J., “The Prediction of Cutting Forces and Surface Accuracy for the Turning Process,” M.S. Thesis, Mechanical Engineering, University of Illinois, 1987.
    16. Liu Y., Zuo L., and Wang C., “Intelligent Adaptive Control in Milling Processes,” International Journal of Computer Integrated Manufacturing 12, pp.453-460, 1999.
    17. Martellotti M. E., “An Analysis of the Milling Process,” Transaction of ASME, 63, pp. 677-700, 1941.
    18. Merchant M.E., “Mechanics of the metal cutting process,” Journal of Application Physical 18, pp.267, 1945.
    19. Merdol S.D. and Altintas Y., “Mechanics and Dynamics of Serrated End Mills,” ASME IMECE2002-39114, New Orleans, LA, 2002.
    20. Merritt, H. E., “Theory of Self-Excited Machine Tool Chatter,” ASME Journal of Engineering for Industry, 87, pp.447-454, 1965.
    21. Minis, I. and Yanushersky, R., “A New Theoretical Approach for the Prediction of Machine Tool Chatter in Milling,” ASME Journal of Engineering for Industry, ll5, pp.l-8, 1993.
    22. Montgomery D., Altintas Y., “Mechanism of Cutting Force and Surface Generation in Dynamic Milling,” ASME Journal of Engineering for Industry, 113, pp. 160-168, 1991.
    23. Nakayama, K., “The Formation of Saw Tooth Chips,” Proc. Int. Conf. on Prod. Engr., Tokyo, pp. 572, 1974.
    24. Nemes J.A., Asamoah A.S. and Budak E., “Cutting Load Capacity of End Mills with Complex Geometry,” Annals of the CIRP, 50, pp.65-68, 2001.
    25. Palmer W.B. and Oxley P.L.B., “Mechanics of orthogonal machining,” Proc. Inst. Mech. Eng. 173, pp. 623-654, 1959.
    26. Piispanen V., “Theory of formation of metal chips,” Journal of Application Physical 19, pp. 876, 1948.
    27. Shaw M.C., “Metal Cutting Principles,” 1990.
    28. Smith, S. and Tlusty, J., “Current Trends in High Speed Machine,” Journal of Manufacturing Science and Engineering, 119, pp.664-666, 1997.
    29. Smith S., and Tlusty J., “An Overview of the Modeling and Simulation of the Milling Process,” ASME Journal of Engineering for Industry, 113, pp. 169-175, 1991.
    30. Spence D., and Altintas Y., “A Solid Modeller Based Milling Simulation and Process Planning System,” ASME Journal of Engineering for Industry, 116, pp. 61-69, 1994.
    31. Stephenson D.A., and Bandyopadhyay P., “Process-Independent Force Characterization for Metal-Cutting Simulation,” ASME Journal of Engineering for Industry, 119, pp. 86-94, 1997.
    32. Sutherland, J. W. and DeVor, R. E., “An Improved Method for Cutting Force and Surface Error Prediction in Flexible End Milling Systems,” Transactions ASME Journal of Engineering for Industry, 108, pp.269-279, 1986.
    33. Tlusty, J., and MacNeil, P., ”Dynamics of Cutting Forces in End Milling, ” CIRP Annals, 24, pp. 21-25, 1975.
    34. Tlusty G., “Manufacturing Process and Equipment,” Prentice Hall, 2000.
    35. Toropov A. and Ko S.L.,“Determination of Stress State in Chip Formation Zone by Central Slip-Line Field,” International Journal of the Korean Society of Precision Engineering, 4, No. 3, 2003.
    36. Wang, J.-J., Huang, C.Y., and Chiang, H.-S., “Forced Vibration Analysis in the End Milling of a Thin Plate,” Journal of the Chinese Society of Mechanical Engineers 23, No. 5 pp. 417-425, 2002.
    37. Wang J.-J., Liang S.Y., and Book W.J., “Convolution Analysis of Milling Forces Pulsation,” ASME Journal of Engineering for Industry, 116, pp. 17-25, 1994.
    38. Wang J.-J. and Lee C.M.,“A Force Model for Cyclindrical End Mills with Sinusoidal Cutting Edges,” in Proceedings of the 20th National Conference on Theoretical and Applied Mechanics, Tapei, Taiwan, December, 2, pp.154-161, 1996.
    39. Wang J.-J. and Liang S.Y., “Kinematic Analysis of Chip load Variation in Milling with Cutter Runout,” ASME Journal of Engineering for Industry, 118, pp. 11-116, 1996.
    40. Wang J.-J. and Zheng C.M., “An Analytical Force Model with Shearing and Ploughing Mechanisms for End Milling,” International. Journal of Machine Tools and Manufacture 42, pp.761-771, 2002.
    41. Yang M., and Park H., “The Prediction of Cutting Force in Ball End Milling,” International Journal of Machine Tools & Manufaqcture, 31, pp. 45-54, 1991.
    42. Yang M. Y., and Lee T. M., “Hybrid adaptive control based on the characteristics of CNC end milling,” International Journal of Machine Tools & Manufacture, 42, pp. 489-499, 2002.
    43. Yellowley I., “Observations on the Mean Values of Forces, Torque and Specific Power in the Peripheral Milling Process,” International Journal of Machine Tool Design and Research 25, pp. 337-346, 1985.
    44. Zorev N.N.,“Metal cutting mechanics,” Pergamon Press, Oxford, 1966.

    下載圖示 校內:立即公開
    校外:2004-08-03公開
    QR CODE