| 研究生: |
賴敬堯 Lai, Jing-Yao |
|---|---|
| 論文名稱: |
利用連續改變重心之自滾動微型供藥轉輪設計 Design of Automatic Rolling Micro-Wheel for Drug Delivery by Continuous Alternation of Gravity Center |
| 指導教授: |
蔡南全
Tsai, Nan-Chyuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 148 |
| 中文關鍵詞: | 微型機器人 、微型投藥系統 、微型螺線管 |
| 外文關鍵詞: | micro-robot, micro-drug delivery system, micro-solenoid |
| 相關次數: | 點閱:123 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究提出ㄧ個由微型轉輪(Micro-Wheel)與釋藥機構(Micro-Drug Release Mechanism)所組成,並利用微製程技術製作,應用於人體內狹小管路釋藥之微型供藥運送微機器人,整體尺寸約5mm。 微型轉輪自主性移動之操作原理,乃設計六組微螺線管線圈環繞於轉輪內緣,並依序激磁以吸引置於轉輪內之受磁圓盤,使微型轉輪重心產生偏離,達到使微型轉輪滾動之目的。此外利用 Ansoft Maxwell 軟體模擬微螺線管線圈之電磁力,分析使微型轉輪在設計條件下展現較佳性能之設計參數。另一方面,根據順滑控制理論擬定一套控制策略,使微型轉輪能夠移動至指定之疾患區域(即長距離運動)與達到精確定位釋藥控制(即短距離運動)雙需求。 至於釋藥機構則包括含角錐形頂尖之懸臂樑與儲存藥劑之膠囊,目的為提供藥物釋放之功能。釋藥機構的致動原理,乃利用靜電力使懸臂樑自由端產生足夠撓度,並由角錐形頂尖之尖端將膠囊之薄膜刺破,以釋放膠囊內之藥劑。最後,將利用微製程整合技術結合微型轉輪與釋藥機構兩系統,達成於人體內狹小管路中定位與釋藥之目的。
This research proposes a micro-medical-wheel of overall size 5X5X2 mm for drug delivery in the human body. The drug delivery system consists of a micro-wheel and a micro-drug release mechanism. Both of them are fabricated by MEMS technology. Based on the operation principle of the gravity center shift, the motion of the micro-wheel is controlled by its center of gravity via a running disk, which is placed within the wheel and attracted by the actuated micro-solenoids fabricated at the inner wall of micro-wheel in shift. By commercial software, Ansoft Maxwell, the electromagnetic force to attract the disk is analyzed so that appropriate design parameters can be obtained. In addition, the micro-wheel is controlled to roll to the designated location by two sliding mode control strategies: one for long-distance motion (to transport the drug to the vicinity of disease) and the other for short-distance motion ( to decelerate down and stop at the exact drug-release location). On the other hand, the micro-drug release mechanism consists of a cantilever beam and a chamber filled up by medicine. The pyramid tip of the cantilever beam deflected by the applied electrostatic force is designed to penetrate the micro-film of the chamber so that the medicine can be released. Finally, the micro-wheel and the micro-drug release mechanism are to be integrated by micro-fabrication integration technology.
[1] K. Ikuta, “The Application of Micro/Miniature Mechatronics Medical Robotics,” Int. Conf. on Intelligent Robots and Systems, pp. 9-13, 1988.
[2] T. Idogaki, H. Kanayama, N. Ohya and T. Hattori, “Characteristics of Piezoelectric Locomotive Mechanism for an In-Pipe Micro Inspection Machine,” International Symposium on Micro Machine and Human Science, p.193-198, 1995.
[3] B. Kim, M. G. Lee and Y. P. Lee, “Anearthworm-like micro robot using shape memory alloy actuator,” Sensors and Actuators, A: Physical, Vol. 125, No. 2, pp. 429-437, 2006.
[4] B. R. Donald, G. Levey, G. McGray, I. Paprotny and D. Rus, “An Untethered Electrostatic Globally Controllable MEMS Micro-Robot,” Journal of Microelectromechanical Systems, Vol. 15, No. 1, pp. 1-15, 2006.
[5] M. H. Mohebbi, M. L. Terry and K. F. Böhringer, “Omnidirectional walking microrobot realized by thermal microactuator arrays,” ASME International Mechanical Engineering Congress and Exposition, Vol. 2, pp. 2741-2747, 2001.
[6] H. David and G. Michael, “Robotic micro-assembly of microparts using a piezogripper,” IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4042-4047, 2008.
[7] C. H. Ahn, M. G. Allen, “Micromachined planar inductors on silicon wafers for MEMS applications,” IEEE Transactions on Industrial Electronics, Vol. 45, No. 6, pp. 866-876, 1998.
[8] K. Gupta and K. K. Raina, “Influence of process parameters and alloy composition on structural, magnetic and electrical characteristics of Ni-Fe permalloys,” Journal of Alloys and Compounds, Vol. 429, No. 1-2, pp. 357-364, 2007.
[9] J. B. Yoon, C. H. Han and E. Yoon, “Novel and high-yield fabrication of electroplated 3D micro-coils for MEMS and microelectronics,” The International Society for Optical Engineering, Vol. 3511, pp. 233-240, 1998.
[10] D. M. Fang, X. N. Wang, Z. Yong and X. L. Zhao, “Fabrication and performance of a micromachined 3-D solenoid inductor,” Microelectronics Journal, Vol. 37, No. 9, pp. 948-951, 2006.
[11] 劉俊昇,微型三維電磁極設計與驅動,國立成功大學機械工程 所,碩士論文,2009。
[12] C. P. Steinmetz “Theory and Calculation of Electric Circuits,” pp. 84, fig. 42, 1917.
[13] K. Noguchi, H. Fujita, M. Suzuki and N. Yoshimura, ”The measurements of friction on micromechatoronics elements,” IEEE Micro Electro Mechanical Systems, pp. 148-153, 1991.
[14] J.J.E. Slotine, J. K. Hedrick and E. A. Misawa, ”ON SLIDING OBSERVERS FOR NONLINEAR SYSTEMS,” American Control Conference, pp. 1794-1800, 1986.
[15] S.V. Drakunov, “Sliding-Mode Observers Based on Equivalent Control Method,” IEEE Conference on Decision and Control (CDC), p. 2368-2369, 1992.
[16] S.N. Singh and W. Yim, “Sliding mode velocity estimation and control of mechanical manipulators,” American Society of Mechanical Engineers, Dynamic Systems and Control Division (Publication) DSC, Vol. 42, p.207-215, 1992.
[17] T. Ahmed-Ali and F. Lamnabhi-Lagarrigue “Sliding observer-controller design for uncertain triangular nonlinear systems,” IEEE Transactions on Automatic Control, Vol. 44, No. 6, pp. 1244-1249, 1999.
[18] D. Koyama, W. Kiyan and Y. Watanabe, ”Micro-capsule destruction using ultrasound for drug delivery system,” IEEE Ultrasonics Symposium, Vol. 2, pp. 1473-1476, 2004.
[19] H. Richert, O. Surzhenko, S. Wangemann and J. Heinrich, “Development of a magnetic capsule as a drug release system for future applications in the human GI tract,” Journal of Magnetism and Magnetic Materials, Vol. 293, No. 1, pp. 497-500, 2005.
[20] Y.Z. Chen, J. Xiao and J.S. Wei, “A novel drug delivery device based on the principle of ultrasonic cavitation,” International Conference on Biomedical Engineering and Informatics, BMEI 2009.
[21] R.Rajan, and S.M. Aziz, ” An electrically controlled micromachined drug delivery device employing two silicon wafers,” The International Society for Optical Engineering, Vol. 6416, 2007.
[22] 微機電系統技術與應用(Micro Electrro Mechanical Systems Technology & Application),行政院國家科學委員會精密儀器發展中心出版,2003。
[23] http://www.ejsong.com/mdme/memmods/MEM30007A/properties/
Properties.html
[24] I. Chasiotis, C. Bateson, K. Timpano, A. S. McCarty, N. S. Barker and J. R. Stanec, “Strain rate effects on the mechanical behavior of nanocrystalline Au films,” Thin Solid Films, Vol. 515, No. 6, pp. 3183-3189, 2007.
[25] M.J. Madou, “Fundamentals of Microfabrication : the Science of Miniaturization 2nd ed.,” 2002.
[26] N.A. Aziz, “Characterization of HNA etchant for silicon microneedles array fabrication,” IEEE International Conference on Semiconductor Electronics, pp. 203-206, 2008.
[27] D.W. Lee, T. Ono and M. Esashi, ”Cantilever with integrated resonator for application of scanning probe microscope,” Sensors and Actuators, A: Physical, Vol. 83, No. 1, pp. 11-16, 2000.
[28] T. Ohnishi, T. Miyamoto and N. Tanifuji, “Micro-fabrication of a prototype hybrid GaAs/ceramics cantilever for SPM applications,” Sensors and Actuators, A: Physical, Vol. 137, No. 1, pp. 34-40, 2007.
[29] S. Rozhok and V. Chandrasekhar, “Application of commercially available cantilevers in tuning fork scanning probe microscopy (SPM) studies,” Solid State Communications, Vol. 121, No. 12, pp. 683-686, 2002.
[30] K.R. Williams, K.Gupta and M. Wasilik, “Etch rates for micromachining processing - Part II,” Journal of Microelectromechanical Systems, Vol. 12, No. 6, pp. 761-778, 2003.