| 研究生: |
劉政祐 Liu, Cheng-yu |
|---|---|
| 論文名稱: |
整合式電化學尿蛋白感測晶片系統 Integrated Microfluidic System for Electrochemical Sensing of Urine Proteins |
| 指導教授: |
李輝煌
Lee, Huei-Huang 李國賓 Lee, Gwo-Bin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 微幫浦 、微閥門 、疏水閥門 、微流體系統 、微機電系統 |
| 外文關鍵詞: | micropump, microvalve, hydrophobic valve, MEMS, microfluidics |
| 相關次數: | 點閱:172 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究成功地結合微流體技術及電化學感測方法在一微流體晶片中來偵測尿蛋白。此微流體晶片由自動檢體稀釋晶片模組與尿蛋白檢測晶片模組組成。自動檢體稀釋晶片模組由疏水閥門、氣動式閥門與微流管道所構成,主要負責在實驗時調配所需的檢體濃度;尿蛋白檢測晶片模組則由氣動式環形幫浦、微流管道與尿蛋白感測晶片組成,負責檢體的傳輸與尿蛋白的偵測。
在晶片製作方面,二模組所需的微流體控制元件包含微流管道、疏水閥門、氣動式閥門、氣動式環形幫浦,皆以聚二甲基矽氧烷(Polydimethylsiloxane, PDMS)材料製作,而感測電極係利用電聚合方法在白金電極上電聚合吡咯(pyrrole, PY)和胺苯硼酸(aminophenylboronic acid, APBA)薄膜完成,最後再利用氧電漿將上板微流體晶片與感測電極封裝完成。
研究中利用十倍的磷酸鹽緩衝液(Phosphate Buffer Saline, PBS)(pH=5)來模擬人體尿液,並以白蛋白做為感測目標物,運用此微流體感測晶片做快速偵測,並觀察溶液中是否有尿蛋白的存在,以判斷人體的健康情況。研究之最終目標是希望藉由此系統的發展,提供一個快速檢測的平台技術。
This paper presents a new microfluidic system capable of detecting urine proteins in an automatic fashion. The system integrated with two major functional devices including a sample dilution module and a urine protein detection module. The sample dilution module consisting of a hydrophobic valve, microvalves and microchannels is designed for diluting the concentration of protein samples. The urine protein detection module is composed of a new spiral-shape micropump, microchannels and an electrochemical sensor for urine protein detection. This module is used for transporting the protein sample solution and for detecting the urine proteins inside the solution. All of the microfluidic structures in the system are fabricated by using soft lithography of polydimethylsiloxane (PDMS). Then, the electrode for the urine protein sensor is formed by depositing and patterning a thin-film of platinum (Pt), followed by electro-depositing a thin polypyrrole layer and poly-aminophenylboronic acid to form the sensing layer. Finally, the sample dilution module and the urine protein detection module are bonded together using the oxygen plasma treatment to form an integrated system. Besides, the proposed integrated system can successfully detect the human urine proteins with a detection limit of 0.1 ppm, As a whole, this study may provide a powerful platform for electrochemical detection of urine proteins.
參考文獻
1. T. Richter, L. Loranelle, O. D. Richtard, U. Bilitewski, D. J. Harrison, “Bi-enzymatic and capillary electrophoretic analysis of non-fluorescent compounds in microfluidic devices: Determination of xanthine,” Sensors and Actuators B, Vol.81, pp. 369-376, 2002.
2. R. Feynman, “There’s Plenty of Room at the Bottom”, Journal of Micro Electro Systems, Vol. 1, pp. 60-66, 1992.
3. R. Feynman, “Infinitesimal Machinery”, Journal of Micro Electro Mechanical Systems, Vol. 2, pp. 4-14, 1993.
4. D. J. Graves, “Powerful tools for genetic analysis come of age,” Trends Biotechnology, Vol. 17, pp. 127-134, 1999.
5. C. B. Epstein and R. A. Butow, “Microarray Technology - Enhanced Versatility, Persistent Challenge”, Current Opinion in Biotechnology, Vol. 11, pp. 36-41, 2000.
6. G. H. W. Sanders and A. Manz, “Chip-based Microsystems for Genomic and Proteomic Analysis”, Trends in Analytical Chemistry, Vol. 19, pp. 364-378, 2000.
7. K. Sato, A. Hibara, M. Tokeshi, H. Hisamoto and T. Kitamori, “Microchip-based Clinical and Biochemical Analysis System”, Journal of Chromatography A, Vol. 987, pp. 197-204, 2003.
8. A. C. R. Grayson, R. S. Shawgo, Y. Li, and M. J. Cima, “Electronic MEMS for Triggered Delivery”, Advanced Drug Delivery Reviews, Vol. 56, pp. 173-814, 2004.
9. A. Richter, A. Plettner, K. A. Hofmann, H. Sandmaier: “A micromachined electrohydrodynamic (EHD) pump”, Sensors and Actuators A, Vol. 29, pp. 159-168, 1991.
10. A. Manz, C. S. Effenhauser, N. Burggraf, D. J. Harrison, K. Seiler, and K. Flurri, “Electroosmotic pumping and electrophoretic separations for miniaturized chemical analysis system”, Journal of Micromechanics and Microengineering, Vol. 4, pp. 257-265, 1994.
11. J. H. Tsai and L. Lin, “A Thermal Bubble Actuated Micro Nozzle-Diffuser Pump”, IEEE MEMS-2001 Conference, Interlaken, Switzerland, 409, Vol. 11, pp. 665-671, 2001.
12. J. Lopez, M. Puig-Vidal, M. Carmona, C. Stamopoulos, T. Laopoulos, and S. Siskos, “Temperature Control Configurations for a Thermopneumatic Micropump”, IEEE MEMS, Orland, FL, USA, pp. 827-830, 1999.
13. R. Linnemann, P. Woias, C. D. Senfft, and J. A. Ditterich, “A Self-priming and Bubble-tolerant Piezoelectric Silicon Micropump for Liquids and Gases”, IEEE MEMS, Heidelberg, Germany, pp. 532-537, 1998.
14. R. Zengerle, J. Ulrich, S. Kluge, M. Richter and A. Richter, “A bidirectional silicon micropump,” Sensors and Actuators A: Physical, Vol. 50, pp. 81-86, 1995.
15. M. A. Unger, H. P. Chou and T. Thorsen, A. Scherer and S. R. Quake, “Monolithic Microfabricated Valve and Pumps by Multilayer Soft Lithography”, Science, Vol. 288, pp. 113-116, 2000.
16. L. Smith and B. Hok, “A Silicon Self-Aligned Non-Reverse Valve,” Solid-State Sensors and Actuators, pp. 1049-1051, 1991.
17. R. M. Mcneely, M. K. Spute, N. A. Tusneem, A. R. Oliphant, “Hydrophobic microfluidics,” SPIE, Conference on Microfluidic Devices and Systems, Vol. 3877, p. 210-220, September 1999.
18. H. Andersson, “Hydrophobic valves of plasma deposited octafluorocyclobutane in DRIE channels”, Sensors and Actuators B, pp. 136-141, 2001.
19. Y. Feng, “Passive valves based on hydrophobic Microfluidics”, Sensors and Actuators A, pp. 138-143, 2003.
20. 回寶珩, 林展生, 李國賓, “PDMS表面處理技術及其在新式微閥之應用”, The 6th Nano Engineering and Micro System Technology Workshop, Sec. 4C-5, 2002.
21. C. Vieider, O. Ohman, and H.elderstig, “A Pneumatically Actuated Micro Valve with a Silicone Rubber Membrane for Integration with Fluid-handling Systems”, Proc. of Transducers ’95, Stockholm, Swede, pp. 284-286, 1995.
22. N. C. Foulds and C. R. Lowe, J. Chem. Soc. Faraday Trans., 1, 82, 1259, 1986.
23. Glasspool, W. V., and Atkinson, J. K., A screen-printed amperometric dissolved oxygen sensor utilizing an immobilized electrolyte gel and membrane, Sensors and Actuators B, 48, 303-317, 1998.
24. Mitsubayashi, K., Wakabayashi, Y., Murotomi, D., Yamada, T., Kawase, T., Iwagaki, S., and Karube, I., Wearable and flexible oxygen sensor for transcutaneous oxygen monitoring, Sensors and Actuators B 95, 373~377, 2003.
25. 黃朝均,“整合微流體之葡萄糖檢測及自動化胰島素注射系統”,國立成功大學微機電系統工程研究所碩士論文,2006.
26. 翁振勛,“應用電化學原理偵測嗎啡,尼古丁分子以及生物離子濃度並整合微流體技術之研究”,國立成功大學工程科學系碩士論文,2006.
27. 林展生,“微流體多工取樣系統於分子模版感測晶片之應用”,國立成功大學工程科學系碩士論文,2004.
28. R. M. Mcneely, M. K. Spute, N. A. Tusneem, A. R. Oliphant, “Hydrophobic microfluidics,” SPIE, Conference on Microfluidic Devices and Systems, Vol. 3877, p. 210-220, September 1999.
29. B. E. Slentz, N. A. Penner and F. E. Regnier, “Capillary Electrochromatography of Peptides on Microfabricated Poly(dimethylsiloxane) Chips Modified by Cerium(IV)-catalyzed Polymerization,” Journal of Chromatography A, Vol. 948, pp. 225–233, 2002.
30. 戴健軒, “細胞分離及細胞核萃取之自動化晶片平台”, 國立成功大學工程科學研究所碩士論文, 2005.
31. John Rick, T. C. Chou, “Amperometric protein sensor-fabricated as a polypyrrole, poly-aminophenylboronic acid bilayer,” Biosens. Bioelectr, vol. 22, pp. 329–335, 2006.
32. K. -Y. Lien, W. -Y. Lin, Y. -F. Lee, C. -H. Wang, H. -Y. Lei and G. -B. Lee, “Microfluidic system integrated with sample pretreatment device for fast nucleic acid amplification,” submitted to IEEE/ASME Journal of Microelectromechanical Systems, 2007.
校內:2017-07-25公開