簡易檢索 / 詳目顯示

研究生: 陸琪朗
Lu, Chi-Lang
論文名稱: 石墨的磁電子性質
Magnetoelectronic Properties of Graphites
指導教授: 林明發
Lin, Min-Fa
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 130
中文關鍵詞: 石墨磁場堆疊能帶電子性質能隙電場
外文關鍵詞: graphite, stacking sequence, electronics, magnetic field, electric field
相關次數: 點閱:84下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   這篇論文之中,我們以緊束模型討論了少層及無限層兩種不同石墨系統的電子性質。在這些不同石墨系統的電子性質將隨著堆疊順序,石墨的層數,鉛直方向電場以及鉛直方向磁場而有著特性上的變化.首先,在少層以及不同堆疊的石墨材料之中,不同層之間的碳原子交互作用力將劇烈的改變低能的能帶分佈,而產生新的邊緣能態以及改變導電帶及價電子帶的重疊範圍.其中以AA堆疊的不同層間碳原子的交互作用為三種堆疊形式中為最強的,因而導致有最大範圍的導電帶與價電子帶重疊及者最多的自由載子密度.此外,電場可以有效率的調制能帶,使得在電場作用下有著更多的邊界能態,以及變化AB以及ABC堆疊的少層石墨的能帶特性而造成半金屬-半導體的轉換.上述能帶變化的主要特徵,將能直接反應在光吸收譜之中.在AB堆疊的少層石墨中,吸收譜的特徵為吸收峰以及肩狀譜線結構來對應.此外,吸收峰的頻率,譜線的強度及特殊譜線結構的數量,主要是依據石墨的層數,以及電場來變化的.而鉛直方向的磁場,將使得三種無限層石墨所有的能帶特性被劇烈的改變.其中,磁場將改變3D能帶使之轉換成1D Landau能級,0D Landau能級,以及震盪的3D Landau能級.此外,在ABC堆疊將有著最弱的不同層的碳原子交互作用,在磁場之中將出現高度簡併的Landau能級.同時,可以在態密度的譜線中觀察到這些特徵.此外,能帶對隨磁場的變化還可觀察到蝴蝶狀的能帶特性.

     Electronic properties are studied for few-layer graphites and bulk graphites within the tight-binding model. They are significantly affected by the stacking sequences (AA, AB; ABC), the number of layers, the perpendicular electric field, and the magnetic flux. As for few-layer graphites, the interlayer atomic interactions would lead to the drastic changes in the low energy dispersions, the new band-edge states, and the overlap of valence and conduction bands. The AA-stacked system has the largest band overlap or the highest free carrier density, since it has the strongest interlayer atomic interactions. The electric field could strongly modulate energy bands so that there are more band-edge states. It even causes the semimetal-semiconductor transitions in the AB- and ABC-stacked systems. The main features of energy bands are directly reflected in the optical excitations. The few-layer AB-stacked graphite could exhibit special peaks and shoulder structures in optical absorption spectra. Absorption frequency, spectrum intensity, and number of special structures are mainly determined by the number of layers and the electric field. The perpendicular magnetic field in three kinds of bulk graphites strongly modifies the overall energy spectra. It could change the 3D energy bands into the 1D Landau levels, the 0D Landau levels, or the 3D oscillating Landau subbands. It is relatively easy to observe the highly degenerate Landau levels in the ABC-stacked bulk graphite with the weakest interlayer atomic interactions. Such Landau levels and subbands would exhibit rich special structures in the density of states. Moreover, the magnetic-flux-dependent energy spectra are the butterfly-like pictures.

    Chapter 1. Introduction ........................................................3 References ....................................................................10 Chapter 2. Low-energy electronic properties of a few graphene layers with AB stacking 2.1 Introduction ..............................................................14 2.2 The tight-binding method ..................................................17 2.3 The electronic properties .................................................19 2.4 Conclusions ...............................................................24 References ....................................................................26 Chapter 3. The stacking effect on electronic properties of the few-layer graphene 3.1 Introduction ..............................................................28 3.2 Theory and method .........................................................30 3.3 The electronic properties .................................................34 3.4 Conclusions ...............................................................38 References ....................................................................40 Chapter 4. The influence of electric field on optical properties of the few-layer graphene with AB-stacking 4.1 Introduction ..............................................................42 4.2 Theory and method .........................................................44 4.3 Optical properties ........................................................48 4.4 Conclusions ...............................................................53 References ....................................................................55 Chapter 5. Magnetoelectronic properties of the AB-stacked graphite 5.1 Introduction ..............................................................58 5.2 The tight-binding method ..................................................60 5.3 The magnetoelectronic properties ..........................................63 5.4 Conclusions ...............................................................71 References ....................................................................73 Chapter 6. Magneto-electronic properties of the AA- and ABC-stacked graphites 6.1 Introduction ..............................................................74 6.2 The tight-binding method ..................................................76 6.3 Magneto-electronic properties .............................................83 6.3 Concluding Remarks ........................................................90 References ....................................................................91 Chapter 7. Summary and future research ........................................93

    B. T. Kelly, Physics of graphite, Applied Science: London, Englewood, N.J., 1981.
    G. Dresselhaus, M. S. Dresselhau, Advances in Physics, 51 (2002) 1.
    R. Clarke, C. Uhpr, Advances in Physics, 33 (2002) 469.
    O. A. Shenderova, V. V. Zhirnov, D. W. Brenner, Crit. Rev. Solid State Mater. Sci., 27 (2002) 227
    J. D. Bernal, Proc. R. Soc. London Ser. A 106 (1924), 749.
    R. R. Haering, Can. J. Phys. 36 (1958) 352.
    J. W. McClure, Carbon 7 (1969) 425.
    B. A. McKinnon, T. C. Choy, Phys. Rev. B 54 (1996) 11777.
    J.-C. Charlier, X. Gonze, J.-P. Michenaud, Carbon, 32 (1994) 289.
    P. R. Wallace, Phys. Rev. 71 (1947) 622.
    J. C. Slonczewski, P. R. Weiss, Phys. Rev. 109 (1958) 272.
    J. W. McClure, Phys. Rev. 119 (1960) 606.
    J.-C. Charlier, X. Gonze, J.-P. Michenaud, Phys. Rev. B 43 (1991) 4579.
    J.-C. Charlier, J.-P. Michenaud, Phys. Rev. B 46 (1992) 4531.
    W. S. Boyle, P. Nozieres, Phys. Rev. 111 (1958) 782.
    E. A. Taft, H. R. Philipp, Phys. Rev. 138 (1965) 197.
    J. A. Balzarotti, M. Grandolfo, Phys. Rev. Lett. 20 (1968) 9.
    Aleksandra B. Djurii, E. Herbert Li., J. Appl. Phys. 85 (1999) 7404.
    R. Satio, G. Dresselhaus, M. S.Dresselhau, Physical properties of carbon nanotubes, Imperial College Press (1998).
    C. C. Tsai, F. L. Shyu, M. F. Lin, et al., Phys. Rev. B 70 (2004) 075411.
    M. F. Lin, K. W. -K. Shung, Phys. Rev. B 50 (1994) R17744.
    M. F. Lin, K. W. -K. Shung, Phys. Rev. B 51 (1995) 7592.
    M. F. Lin, D. S. Chuu., K. W. -K. Shung, Phys. Rev. B 53 (1996) 11186.
    M. F. Lin, D. S. Chuu, C. S. Huang, K. W. -K. Shung, et al., Phys. Rev. B 53 (1996) 15493.
    M. F. Lin, K. W. -K. Shung, Phys. Rev. B 54 (1996) 2896.
    M. F. Lin, D. S. Chuu, J. Phys. Soc. Jpn 66 (1997) 757.
    M. F. Lin, D. S. Chuu, and K. W. -K. Shung, Phys. Rev. B 55 (1997) 13961.
    F. L. Shyu, M. F. Lin, J. Phys. Soc. Jpn. 69 (2000) 3529.
    M. F. Lin, D. S. Chuu, Phys. Rev. B 57 (1998) 6731.
    M. F. Lin, J. Phys. Soc. Jpn. 67 (Letter, 1998) 1094.
    M. F. Lin, R. B. Chen, and F. L. Shyu, Solid. State. Communs. 107 (1998) 227.
    M. F. Lin, J. Phys. Soc. Jpn. 67 (Letter, 1998) 2218.
    M. F. Lin, Phys. Rev. B 58 (1998) 3629.
    M. F. Lin, J. Phys. Soc. Jpn. 68 (1999) 140.
    M. F. Lin, Physica B 269 (1999) 43.
    M. F. Lin, J. Phys. Soc. Jpn. 68 (Letter, 1999) 1102.
    F. L. Shyu, C. C. Tsai, M. F. Lin, {it et al.}, Carbon 42 (2004) 2879.
    M. F. Lin, F. L. Shyu, J. Phys. Soc. Jpn. 69 (Letter, 2000) 3529.
    F. L. Shyu, M. F. Lin, C. P. Chang, et al., J. Phys. Soc. Jpn. 70 (2001) 3348.
    C. W. Chiu, F. L. Shyu, M. F. Lin, et al., J. Phys. Soc. Jpn. 72 (2003) 170.
    K. S. Novoselov, A. K. Geim, A. A. Firsov, et al., Science 306 (2004) 666.
    J. S. Bunch, Y. Yaish, P. L. McEuen, et al., Nano. Lett. 5 (2005) 287.
    Y. H. Wu, B. J. Yang, Y. P. Feng, et al., J. Mat. Chem. 14 (2004) 469.
    Y. B. Zhang, J. P. Small, W. V. Pontius, P. Kim, Appl. Phys. Lett. 86 (2005) 073104.
    K. S. Novoselov, A. K. Geim, A. A. Firsov, et al., Nature 438 (2005) 197.
    S. Iijima, Nature 354 (1991) 56.
    R. Ahuja, S. Auluck, B. Johansson, et al., Phys. Rev. B 51 (1995) 4813.
    R. C. Tatar, S. Rabii, Phys. Rev. B 25 (1982) 4126.
    M. Mendez, A. Misu, M. S. Dresslhaus, Phys. Rev. B 21 (1980) 827.
    C. P. Chang, C. L. Lu, M. F. Lin, et al., Carbon 42 (2004) 2975.
    C. P. Chang, C. L. Lu, M. F. Lin, et al., Carbon 43 (2005) 1424.
    J. Singh, Physics of semiconductors and their heterostructures, McGraw-Hill, 1993.
    X. Zhou, H. Chen, O. Y. Zhong-can, J. of Phys.: Cond Mat 13 (2001) L635.
    Y. H. Kim, K. J. Chang, Phys. Rev. B 64 (2001) 153404.
    J. O'Keeffe, C. Y. Wei, K. J. Cho, Appl. Phys. Lett. 80 (2002) 676.
    Y. Li, S. V. Rotkin, U. Ravaioli. Nano. Lett. 3 (2003) 183.
    K. H. Khoo, M. S. C. Mazzoni, S. G. Louie, Phys. Rev. B 69 (2004) 201401.
    N. H. Shon, T. J. Ando, Phys. Soc. Jpn. 67 (1998) 2421.
    J.-C. Charlier, J.-P. Michenaud, Ph. Lambin, Phys. Rev. B 46 (1992) 4540.
    C. Villaquiran, M. Gomez, N. Luiggi, Phys. stat. sol. (b), 220 (2000) 691.
    Y. B. Zhang, J. P. Small, M. E. S. Amori, P. Kim, Phys. Rev. Lett. 94 (2005) 176803.
    C. L. Lu, C. P. Chang, M. F. Lin, et al., Carbon (submitted).
    C. L. Lu, C. P. Chang, M. F. Lin, et al., Phys. Rev. B (submitted).
    M. Araidai, Y. Nakamura, K. Watanabe, Phys. Rev. B 70 (2004) 245410.
    C. P. Chang, Y. C. Huang, M. F. Lin, et al., Carbon 44 (2006) 508.
    R. Ahuja, S. Auluck, B. Johansson, et al., Phys. Rev. B 51 (1995) 3481.
    T. I. Jeon, K. J. Kim, Y. H. Lee, et al., J. Appl. Phys. 95 (2004) 5736.
    C. P. Chang, Y. C. Huang, M. F. Lin, et al., Carbon (in press; doi:10.1016/j.carbon.2005.08.009)
    J. G. Johnson, G. Dresselhaus, Phys. Rev. B 7 (1973) 2275.
    F. L. Shyu, C. P. Chang, M. F. Lin, et al., Phys. Rev. B 67 (2003) 045405.
    A. Gruneis, R. Saito, M.S. Dresselhaus, et al., Phys. Rev. B 67 (2003) 165402.
    J. Jiang , R. Saito, M. S. Dresslhaus, Carbon 42 (2004) 3169.
    R. Ahuja, S. Auluck, O. Eriksson, et al., Phys. Rev. B 55 (1997) 4999.
    G. Dresselhaus, Phys. Rev. B 10 (1974) 3602.
    K. Nakao, J. Phys. Soc. Jpn. 40 (1976) 761.
    M. S. Dresselhaus, G. Dresselhaus, Phys. Rev. B 13 (1976) 4635.
    W. W. Toy, M. S. Dresselhaus, G. Dresselhaus, Phys. Rev. B 15 (1997) 4077.
    R. E. Doezema, W. R. Datars, et al., Phys. Rev. B 19 (1979) 4224.
    Y. Iye, L. E. McNeil, G. Dresselhaus, Phys. Rev. B 30 (1984) 7009.
    Y. Takada, H. Goto, J. Phys. Condens. Matter 10 (1998) 11315.
    W. W. Toy, M. S. Dresselhaus, Dresselhaus Phys. Rev. B 15 (1977) 4077.
    L. P. Bouckaert, R. Smoluchowski, E. Wigner, Phys. Rev. 50 (1936) 58.
    T. Matsui, H. Kambara, H. Fukuyama, et al., Phys. Rev. Lett. 94 (2005) 226403
    J.-C. Charlier, J.-P. Michenaud, X. Gonze, J.-P Vigneron, Phys. Rev. B 44 (1991) 13 237.
    R. E. Peierls, Z. Physik 80 (1933) 763.
    K. Wakabayashi, M. Fujita, H. Ajiki, M. Sigrist, Phys. Rev. B 59 (1999) 8271.
    J. W. McClure, Carbon 7 (1969) 452.
    C. Berger, Z. Song, W. A. de Heer, et al., J. Phys. Chem. B 108 (2004) 19912.
    Y. Zhang, Y. W. Tan, H. L. Stormer, P. Kim, Nature 438 (2005) 201.

    下載圖示 校內:立即公開
    校外:2006-01-11公開
    QR CODE