簡易檢索 / 詳目顯示

研究生: 莊育禎
Chuang, Yu-Chen
論文名稱: 探討調控蝴蝶蘭花部單萜類生合成之順式與反式因子
Study of both cis and trans factors regulating floral monoterpene biosynthesis in Phalaenopsis orchids
指導教授: 陳虹樺
Chen, Hong-Hwa
學位類別: 博士
Doctor
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 123
中文關鍵詞: 順式元件外在因子花香內在因子單萜類蝴蝶蘭轉錄調控轉錄因子
外文關鍵詞: cis-elements, external factors, floral scents, internal factors, monoterpenes, Phalaenopsis orchids, transcriptional regulation, transcription factors
相關次數: 點閱:67下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 蝴蝶蘭的香味性狀一直是育種者的目標之一。大葉蝴蝶蘭為培育香味蝴蝶蘭的重要親本,其花部香味的主要成分為單萜類。過去的研究成果已經選殖及分析大葉蝴蝶蘭單萜類生合成之關鍵酵素PbGDPS。本研究為了探討影響蝴蝶蘭中單萜類合成的調控機制,首先建構具香味的大葉蝴蝶蘭花部轉錄體,並與不具香味的台灣阿嬤蝴蝶蘭花部轉錄分析比較後,確認參與單萜類生合成之酵素基因表現量差異乃是影響蝴蝶蘭中單萜類合成的關鍵因子。在影響PbGDPS基因表現量的因子中,先行分析反式元件。利用轉錄體的表現量聚合分析,在約2,300個轉錄因子中,選出了八個在大葉蝴蝶蘭中具有高表現量的轉錄因子,其中五個能夠反式激活參與大葉蝴蝶蘭單萜類合成的酵素基因,包含PbbHLH4、PbbHLH6、PbbZIP4、PbERF1與PbNAC1。進一步在台灣阿嬤蝴蝶蘭中的異位暫時表現結果中,PbbHLH4能最有效提升GDPS與單萜類合成酵素MTPS7的基因表現,並提升近千倍的單萜類合成量,而其他四個的效果較為微弱。顯示PbbHLH4是影響蝴蝶蘭單萜類合成的主要的反式因子。在探討影響GDPS表現的順式因子方面,藉由分析十二個具香味與不具香味蝴蝶蘭的GDPS啟動子序列,發現一個雙重覆片段僅存於在具香味蝴蝶蘭的GDPS啟動子。利用系列刪除實驗確認此雙重覆片段乃為決定GDPS啟動子活性的關鍵順式因子。進一步,利用阿拉伯芥的順式元件篩選酵母單雜交文庫實驗,分離出會結合上此雙重覆片段的轉錄因子,AtbZIP18。並在大葉蝴蝶蘭的花部轉錄體中,篩選出在DNA結合區域與AtbZIP18具有83%相似度的PbbZIP4。PbbZIP4能夠反式激活具雙重覆片段的GDPS啟動子,卻無法激活不具有雙重覆片段的GDPS啟動子序列。PbbZIP4在台灣阿嬤蝴蝶蘭中的異位暫時表現能有效促進單萜類物質的產生。顯示此雙重覆片段是一個影響GDPS表現與單萜類合成的重要順式元件。最後,在探討影響蝴蝶蘭單萜類香味合成的外在與內在因子實驗,發現外在的光因子與內在的生物週期韻律因子皆會影響蝴蝶蘭的單萜類花香釋放。本研究結果不僅能使我們對單萜類花香調控有更進一步的了解,亦能應用在蝴蝶蘭產業,創造出更具吸引力的香味蘭花。

    Floral scent trait is one of the important novel targets for orchid breeders. Phalaenopsis bellina has a charming floral scent and is widely used as a breeding parent for the scent phenotype. The main floral volatiles in P. bellina are monoterpenes. Previous studies have cloned and analyzed PbGDPS, the key enzyme involved in the monoterpenes biosynthesis in P. bellina. To study the regulation of floral scent biosynthesis in Phalaenopsis orchids, floral transcriptome libraries of scented P. bellina were constructed and compared to that of the scentless P. aphrodite. Significant differential expression of GDPS between P. bellina and P. aphrodite, indicating that the elevated GDPS expression in the scented P. bellina is critical for its monoterpene accumulation. To identify the upstream factors regulating GDPS in Phalaenopsis orchids, I focused on the trans-factor first. By comparative transcriptome analysis, eight candidate transcription factors (TFs) out of 2360 TFs were showed to enhance differential expression between the two transcriptomes. Among them, five TFs, including PbbHLH4, PbbHLH6, PbbZIP4, PbERF1, and PbNCA1, showed transactivation for monoterpene biosynthesis genes. Ectopic transient expression of these TFs in the scentless P. aphrodite revealed that PbbHLH4 most profoundly induces the monoterpene phenotype with a ~1000-fold increase of monoterpenoid production, while the other 4 showed minor effects. These results indicate its major role for monoterpene biosynthesis in Phalaenopsis orchids. Next, I examined the cis-factor affecting the expression of GDPS. By analyzing the GDPS promoter fragments isolated from 12 scented and scentless orchids, a dual repeat cis-element is present only in the Phalaenopsis orchids emitting monoterpenes. Serial deletions of the GDPS promoter fragment demonstrates that this dual repeat is crucial for its promoter activities. Screening the Arabidopsis TFs cDNA library by using yeast one-hybrid assay reveals that AtbZIP18 is able to bind the dual repeat. PbbZIP4 is isolated in the transcriptome of P. bellina with an 83% identity in the DNA binding region. PbbZIP4 can only transactivate the GDPS promoter fragment containing the complete or near-complete dual repeat. In addition, ectopic transient expression of PbbZIP4 induces production of monoterpenes in the scentless orchid. These results indicate that the dual repeat is significant for GDPS gene expression, and thus subsequent monoterpene biosynthesis in Phalaenopsis orchids. Furthermore, by exploring the external and internal signals regulating the floral monoterpene emission, it is found to be under the control of light and circadian rhythm in Phalaenopsis orchids. Taken together, this study not only leads to a better understanding of the floral scents regulation in Phalaenopsis orchids, but also assist the marker-based selection as well as the molecular breeding of scented orchids.

    中文摘要 I ABSTRACT II CHAPTER 1 Literature survey 1 1.1 BACKGROUND 2 1.1.1 Scented orchids 2 1.1.2 Bottlenecks for breeding scented Phalaenopsis orchids 3 1.1.3 Volatile organic compounds 4 1.1.3.1 Monoterpenoids and their roles 4 1.1.3.2 Application of monoterpenoids 4 1.1.3.3 Biosynthesis of monoterpenes 5 1.1.3.4 Studies on the monoterpene biosynthesis in P. bellina 6 1.1.4 Studies on the regulation of terpenoid biosynthesis 7 1.1.4.1 cis-regulation of terpenoid biosynthesis 7 1.1.4.2 trans-regulation of terpenoid biosynthesis 8 1.1.4.3 The external and internal signals regulating terpenoid biosynthesis 9 1.2 SPECIFIC AIM 11 1.3 STRATEGIES 11 TABLES (1-1) 12 FIGURES (1-1) 13 CHAPTER 2 Characterization of trans-factors regulating floral monoterpene biosynthesis in Phalaenopsis orchids 14 2.1 INTRODUCTION 15 2.2 MATERIALS AND METHODS 16 2.3 RESULTS 21 2.4 DISCUSSION 27 TABLES (2-1~2-2) 33 FIGURES (2-1~2-16) 35 CHAPTER 3 Characterization of cis-factors regulating floral monoterpene biosynthesis in Phalaenopsis orchids 53 3.1 INTRODUCTION 54 3.2 MATERIALS AND METHODS 56 3.3 RESULTS 60 3.4 DISCUSSION 64 TABLES (3-1~3-5) 69 FIGURES (3-1~3-10) 75 CHAPTER 4 The external and internal signals regulating floral monoterpene biosynthesis in Phalaenopsis orchids 86 4.1 INTRODUCTION 87 4.2 MATERIALS AND METHODS 88 4.3 RESULTS 90 4.4 DISCUSSION 93 TABLES (4-1) 95 FIGURES (4-1~4-6) 96 CHAPTER 5 Conclusions & perspectives 102 REFERENCES 105 ABBREVIATION INDEX 122

    REFERENCES
    1. Schiestl, FP, Ayasse, M, Paulus, H, Löfstedt, C, Hansson, BS, Ibarra, F, and Francke, W, Sex pheromone mimicry in the early spider orchid (Ophrys sphegodes): patterns of hydrocarbons as the key mechanism for pollination by sexual deception. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology. 186(6): p. 567-574, 2000.
    2. Plepys, D, Ibarra, F, and Löfstedt, C, Volatiles from flowers of Platanthera bifolia (Orchidaceae) attractive to the silver Y moth, Autographa gamma (Lepidoptera: Noctuidae). Oikos. 99(1): p. 69-74, 2002.
    3. Huber, FK, Kaiser, R, Sauter, W, and Schiestl, FP, Floral scent emission and pollinator attraction in two species of Gymnadenia (Orchidaceae). Oecologia. 142(4): p. 564-575, 2005.
    4. Brodmann, J, Twele, R, Francke, W, Hölzler, G, Zhang, Q-H, and Ayasse, M, Orchids mimic green-leaf volatiles to attract prey-hunting wasps for pollination. Current Biology. 18(10): p. 740-744, 2008.
    5. Peakall, R, Ebert, D, Poldy, J, Barrow, RA, Francke, W, Bower, CC, and Schiestl, FP, Pollinator specificity, floral odour chemistry and the phylogeny of Australian sexually deceptive Chiloglottis orchids: implications for pollinator‐driven speciation. New Phytologist. 188(2): p. 437-450, 2010.
    6. Policha, T, Davis, A, Barnadas, M, Dentinger, B, Raguso, RA, and Roy, BA, Disentangling visual and olfactory signals in mushroom‐mimicking Dracula orchids using realistic three‐dimensional printed flowers. New Phytologist. 210(3): p. 1058-1071, 2016.
    7. Christenson, EA, Phalaenopsis: a monograph. Portland, OR, USA: Timber Press. 330, 2001.
    8. Hsiao, Y-Y, Pan, Z-J, Hsu, C-C, Yang, Y-P, Hsu, Y-C, Chuang, Y-C, Shih, H-H, Chen, W-H, Tsai, W-C, and Chen, H-H, Research on orchid biology and biotechnology. Plant and Cell Physiology. 52(9): p. 1467-1486, 2011.
    9. Kaiser, R, The scent of orchids: olfactory and chemical investigations. Commercial ed. Elsevier: Amsterdam: The Netherlands. p. 239-240, 1993.
    10. Yeh, Y-C, Tsay, Y-S, Shih, C-T, and Huang, P, Selection and breeding of scented Phalaenopsis varieties. Agricultural policy and agricultural situation. 267, 2014.
    11. Hsiao, YY, Tsai, WC, Chen, WH, and Chen, HH, Biosynthetic regulation of floral scent in Phalaenopsis, in Orchid biotechnology II, Chen, WH and Chen, HH, Editors., World Scientific: Singapore. p. 145-180, 2011.
    12. Christenson, EA and Whitten, MW, Phalaenopsis bellina (Rchb. f.) Christenson, a segregate from P. violacea Witte (Orchidaceae: Aeridinae). Brittonia. 47(1): p. 57-60, 1995.
    13. Hsiao, YY, Tsai, WC, Kuoh, CS, Huang, TH, Wang, HC, Wu, TS, Leu, YL, Chen, WH, and Chen, HH, Comparison of transcripts in Phalaenopsis bellina and Phalaenopsis equestris (Orchidaceae) flowers to deduce monoterpene biosynthesis pathway. BMC Plant Biology. 6(1): p. 14, 2006.
    14. Awano, K, Honda, T, Ogawa, T, Suzuki, S, and Matsunaga, Y, Volatile components of Phalaenopsis schilleriana Rehb. f. Flavour and fragrance journal. 12(5): p. 341-344, 1997.
    15. Tsai, W-C, Hsiao, Y-Y, Pan, Z-J, Hsu, C-C, Yang, Y-P, Chen, W-H, and Chen, H-H, Molecular biology of orchid flowers: With emphasis on Phalaenopsis. Advances in Botanical Research. 47: p. 99-145, 2008.
    16. Yeh, C-H, Tsai, W-Y, Chiang, H-M, Wu, C-S, Lee, Y-I, Lin, L-Y, and Chen, H-C, Headspace solid-phase microextraction analysis of volatile components in Phalaenopsis Nobby’s Pacific Sunset. Molecules. 19(9): p. 14080-14093, 2014.
    17. Yeh, YC, Wang, CH, Luo, MZ, Chang, CJ, and Tsay, YS, Characteristic of a new fragrance cultivar Phalaenopsis Hualien Pink Apple. Bull. Hualien DARES. 34: p. 1-8, 2016.
    18. Lin, S, Lee, H-C, Chen, W-H, Chen, C-C, Kao, Y-Y, Fu, Y-M, Chen, Y-H, and Lin, T-Y, Nuclear DNA contents of Phalaenopsis sp. and Doritis pulcherrima. Journal of the American Society for Horticultural Science. 126(2): p. 195-199, 2001.
    19. Vainstein, A, Lewinsohn, E, Pichersky, E, and Weiss, D, Floral fragrance. New inroads into an old commodity. Plant physiology. 127(4): p. 1383-1389, 2001.
    20. Dudareva, N and Negre, F, Practical applications of research into the regulation of plant volatile emission. Current opinion in plant biology. 8(1): p. 113-118, 2005.
    21. Porat, R, Borochov, A, and Halevy, A, Enhancement of petunia and dendrobium flower senescence by jasmonic acid methyl ester is via the promotion of ethylene production. Plant Growth Regulation. 13(3): p. 297-301, 1993.
    22. Muhlemann, JK, Klempien, A, and Dudareva, N, Floral volatiles: from biosynthesis to function. Plant, cell & environment. 37(8): p. 1936-1949, 2014.
    23. Dudareva, N, Klempien, A, Muhlemann, JK, and Kaplan, I, Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytologist. 198(1): p. 16-32, 2013.
    24. Nagegowda, DA, Rhodes, D, and Dudareva, N, The role of the methyl-erythritol-phosphate (MEP) pathway in rhythmic emission of volatiles, in The Chloroplast, Tripathy, CARBJBDKHKLRPC, Editor., Springer Netherlands: Netherlands. p. 139-154, 2010.
    25. Knudsen, JT and Gershenzon, J, The chemical diversity of floral scent. Biology of floral scent: p. 27-52, 2006.
    26. Schwab, W, Davidovich‐Rikanati, R, and Lewinsohn, E, Biosynthesis of plant‐derived flavor compounds. The plant journal. 54(4): p. 712-732, 2008.
    27. Byers, KJ, Bradshaw, H, and Riffell, JA, Three floral volatiles contribute to differential pollinator attraction in monkeyflowers (Mimulus). Journal of Experimental Biology. 217(4): p. 614-623, 2014.
    28. Paré, PW and Tumlinson, JH, Plant volatiles as a defense against insect herbivores. Plant physiology. 121(2): p. 325-332, 1999.
    29. Huang, Xz, Xiao, Yt, Köllner, TG, Jing, Wx, Kou, Jf, Chen, Jy, Liu, Df, Gu, Sh, Wu, Jx, and Zhang, Yj, The terpene synthase gene family in Gossypium hirsutum harbors a linalool synthase GhTPS12 implicated in direct defense responses against herbivores. Plant, Cell & Environment. 41(1): p. 261-274, 2018.
    30. Loughrin, JH, Manukian, A, Heath, RR, Turlings, T, and Tumlinson, JH, Diurnal cycle of emission of induced volatile terpenoids by herbivore-injured cotton plant. Proceedings of the National Academy of Sciences. 91(25): p. 11836-11840, 1994.
    31. Opitz, S, Kunert, G, and Gershenzon, J, Increased terpenoid accumulation in cotton (Gossypium hirsutum) foliage is a general wound response. Journal of chemical ecology. 34(4): p. 508-522, 2008.
    32. Marei, GIK, Rasoul, MAA, and Abdelgaleil, SA, Comparative antifungal activities and biochemical effects of monoterpenes on plant pathogenic fungi. Pesticide biochemistry and physiology. 103(1): p. 56-61, 2012.
    33. Yamasaki, Y, Kunoh, H, Yamamoto, H, and Akimitsu, K, Biological roles of monoterpene volatiles derived from rough lemon (Citrus jambhiri Lush) in citrus defense. Journal of General Plant Pathology. 73(3): p. 168-179, 2007.
    34. Weiss, EA, Essential oil crops. Cab International, 1997.
    35. Aharoni, A, Giri, AP, Verstappen, FW, Bertea, CM, Sevenier, R, Sun, Z, Jongsma, MA, Schwab, W, and Bouwmeester, HJ, Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species. The Plant Cell. 16(11): p. 3110-3131, 2004.
    36. Katsukawa, M, Nakata, R, Koeji, S, Hori, K, Takahashi, S, and Inoue, H, Citronellol and geraniol, components of rose oil, activate peroxisome proliferator-activated receptor α and γ and suppress cyclooxygenase-2 expression. Bioscience, biotechnology, and biochemistry. 75(5): p. 1010-1012, 2011.
    37. Gould, MN, Cancer chemoprevention and therapy by monoterpenes. Environmental Health Perspectives. 105(Suppl 4): p. 977, 1997.
    38. Jun, M, Jeong, W, and Ho, C, Health promoting properties of natural flavor substances. Food Science and Biotechnology. 15(3): p. 329, 2006.
    39. Crowell, PL, Prevention and therapy of cancer by dietary monoterpenes. The Journal of nutrition. 129(3): p. 775S-778S, 1999.
    40. Cho, M, So, I, Chun, JN, and Jeon, J-H, The antitumor effects of geraniol: Modulation of cancer hallmark pathways. International journal of oncology. 48(5): p. 1772-1782, 2016.
    41. Nakayama, K, Murata, S, Ito, H, Iwasaki, K, Villareal, MO, Zheng, YW, Matsui, H, Isoda, H, and Ohkohchi, N, Terpinen-4-ol inhibits colorectal cancer growth via reactive oxygen species. Oncology letters. 14(2): p. 2015-2024, 2017.
    42. Carnesecchi, S, Schneider, Y, Ceraline, J, Duranton, B, Gosse, F, Seiler, N, and Raul, F, Geraniol, a component of plant essential oils, inhibits growth and polyamine biosynthesis in human colon cancer cells. Journal of Pharmacology and Experimental Therapeutics. 298(1): p. 197-200, 2001.
    43. Murthy, KNC, Jayaprakasha, GK, and Patil, BS, D-limonene rich volatile oil from blood oranges inhibits angiogenesis, metastasis and cell death in human colon cancer cells. Life sciences. 91(11): p. 429-439, 2012.
    44. Wattenberg, L, Inhibition of neoplasia by minor dietary constituents. Cancer Research. 43(5 Suppl): p. 2448s-2453s, 1983.
    45. Elson, CE, Maltzman, TH, Boston, JL, Tanner, MA, and Gould, MN, Anti-carcinogenic activity of d-limonene during the initiation and promotion/progression stages of DMBA-induced rat mammary carcinogenesis. Carcinogenesis. 9(2): p. 331-332, 1988.
    46. Haag, JD, Lindstrom, MJ, and Gould, MN, Limonene-induced regression of mammary carcinomas. Cancer research. 52(14): p. 4021-4026, 1992.
    47. Stark, MJ, Burke, YD, McKinzie, JH, Ayoubi, AS, and Crowell, PL, Chemotherapy of pancreatic cancer with the monoterpene perillyl alcohol. Cancer letters. 96(1): p. 15-21, 1995.
    48. Burke, YD, Stark, MJ, Roach, SL, Sen, SE, and Crowell, PL, Inhibition of pancreatic cancer growth by the dietary isoprenoids farnesol and geraniol. Lipids. 32(2): p. 151-156, 1997.
    49. Duncan, RE, Lau, D, El-Sohemy, A, and Archer, MC, Geraniol and β-ionone inhibit proliferation, cell cycle progression, and cyclin-dependent kinase 2 activity in MCF-7 breast cancer cells independent of effects on HMG-CoA reductase activity. Biochemical pharmacology. 68(9): p. 1739-1747, 2004.
    50. Ong, TP, Heidor, R, de Conti, A, Dagli, MLZ, and Moreno, FS, Farnesol and geraniol chemopreventive activities during the initial phases of hepatocarcinogenesis involve similar actions on cell proliferation and DNA damage, but distinct actions on apoptosis, plasma cholesterol and HMGCoA reductase. Carcinogenesis. 27(6): p. 1194-1203, 2005.
    51. Kim, S-H, Bae, HC, Park, E-J, Lee, CR, Kim, B-J, Lee, S, Park, HH, Kim, S-J, So, I, and Kim, TW, Geraniol inhibits prostate cancer growth by targeting cell cycle and apoptosis pathways. Biochemical and Biophysical Research Communications. 407(1): p. 129-134, 2011.
    52. Galle, M, Crespo, R, Rodenak Kladniew, B, Montero Villegas, S, Polo, M, and de Bravo, MG, Suppression by geraniol of the growth of A549 human lung adenocarcinoma cells and inhibition of the mevalonate pathway in culture and in vivo: potential use in cancer chemotherapy. Nutrition and cancer. 66(5): p. 888-895, 2014.
    53. Medicherla, K, Sahu, BD, Kuncha, M, Kumar, JM, Sudhakar, G, and Sistla, R, Oral administration of geraniol ameliorates acute experimental murine colitis by inhibiting pro-inflammatory cytokines and NF-κB signaling. Food & function. 6(9): p. 2984-2995, 2015.
    54. Guimarães, AG, Quintans, JS, and Quintans‐Júnior, LJ, Monoterpenes with analgesic activity—a systematic review. Phytotherapy Research. 27(1): p. 1-15, 2013.
    55. de Cássia da Silveira e Sá, R, Andrade, LN, and de Sousa, DP, A review on anti-inflammatory activity of monoterpenes. Molecules. 18(1): p. 1227-1254, 2013.
    56. Laule, O, Fürholz, A, Chang, H-S, Zhu, T, Wang, X, Heifetz, PB, Gruissem, W, and Lange, M, Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. Proceedings of the national academy of sciences. 100(11): p. 6866-6871, 2003.
    57. Opitz, S, Nes, WD, and Gershenzon, J, Both methylerythritol phosphate and mevalonate pathways contribute to biosynthesis of each of the major isoprenoid classes in young cotton seedlings. Phytochemistry. 98: p. 110-119, 2014.
    58. Bick, JA and Lange, BM, Metabolic cross talk between cytosolic and plastidial pathways of isoprenoid biosynthesis: unidirectional transport of intermediates across the chloroplast envelope membrane. Archives of Biochemistry and Biophysics. 415(2): p. 146-154, 2003.
    59. Dudareva, N, Pichersky, E, and Gershenzon, J, Biochemistry of plant volatiles. Plant physiology. 135(4): p. 1893-1902, 2004.
    60. Degenhardt, J, Köllner, TG, and Gershenzon, J, Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry. 70(15-16): p. 1621-1637, 2009.
    61. Hsiao, YY, Jeng, MF, Tsai, WC, Chuang, YC, Li, CY, Wu, TS, Kuoh, CS, Chen, WH, and Chen, HH, A novel homodimeric geranyl diphosphate synthase from the orchid Phalaenopsis bellina lacking a DD (X) 2–4D motif. The Plant Journal. 55(5): p. 719-733, 2008.
    62. Wang, H, Han, J, Kanagarajan, S, Lundgren, A, and Brodelius, PE, Studies on the expression of sesquiterpene synthases using promoter-β-Glucuronidase fusions in transgenic Artemisia annua L. PLoS one. 8(11): p. e80643, 2013.
    63. Wang, H, Kanagarajan, S, Han, J, Hao, M, Yang, Y, Lundgren, A, and Brodelius, PE, Studies on the expression of linalool synthase using a promoter-β-glucuronidase fusion in transgenic Artemisia annua. Journal of plant physiology. 171(2): p. 85-96, 2014.
    64. Ginis, O, Courdavault, V, Melin, C, Lanoue, A, Giglioli-Guivarc’h, N, St-Pierre, B, Courtois, M, and Oudin, A, Molecular cloning and functional characterization of Catharanthus roseus hydroxymethylbutenyl 4-diphosphate synthase gene promoter from the methyl erythritol phosphate pathway. Molecular biology reports. 39(5): p. 5433-5447, 2012.
    65. Liao, Y, Xu, F, Huang, X, Zhang, W, Cheng, H, Wang, X, Cheng, S, and Shen, Y, Characterization and transcriptional profiling of Ginkgo biloba mevalonate diphosphate decarboxylase gene (GbMVD) promoter towards light and exogenous hormone treatments. Plant Molecular Biology Reporter. 34(3): p. 566-581, 2016.
    66. Hua, W, Song, J, Li, C, and Wang, Z, Molecular cloning and characterization of the promoter of SmGGPPs and its expression pattern in Salvia miltiorrhiza. Molecular biology reports. 39(5): p. 5775-5783, 2012.
    67. Nieuwenhuizen, NJ, Chen, X, Wang, MY, Matich, AJ, Perez, RL, Allan, AC, Green, SA, and Atkinson, RG, Natural variation in monoterpene synthesis in kiwifruit: transcriptional regulation of terpene synthases by NAC and ETHYLENE-INSENSITIVE3-like transcription factors. Plant physiology. 167(4): p. 1243-1258, 2015.
    68. Hong, G-J, Xue, X-Y, Mao, Y-B, Wang, L-J, and Chen, X-Y, Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression. The Plant Cell. 24(6): p. 2635-2648, 2012.
    69. Xu, Y-H, Wang, J-W, Wang, S, Wang, J-Y, and Chen, X-Y, Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene (+)-δ-cadinene synthase-A. Plant Physiology. 135(1): p. 507-515, 2004.
    70. Li, S, Wang, H, Li, F, Chen, Z, Li, X, Zhu, L, Wang, G, Yu, J, Huang, D, and Lang, Z, The maize transcription factor EREB58 mediates the jasmonate‐induced production of sesquiterpene volatiles. The Plant Journal. 84(2): p. 296-308, 2015.
    71. Li, X, Xu, Y, Shen, S, Yin, X, Klee, H, Zhang, B, and Chen, K, Transcription factor CitERF71 activates the terpene synthase gene CitTPS16 involved in the synthesis of E-geraniol in sweet orange fruit. Journal of Experimental Botany. 68(17): p. 4929-4938, 2017.
    72. Verdonk, JC, Haring, MA, van Tunen, AJ, and Schuurink, RC, ODORANT1 regulates fragrance biosynthesis in petunia flowers. The Plant Cell. 17(5): p. 1612-1624, 2005.
    73. Spitzer-Rimon, B, Marhevka, E, Barkai, O, Marton, I, Edelbaum, O, Masci, T, Prathapani, N-K, Shklarman, E, Ovadis, M, and Vainstein, A, EOBII, a gene encoding a flower-specific regulator of phenylpropanoid volatiles' biosynthesis in petunia. The Plant Cell. 22(6): p. 1961-1976, 2010.
    74. Colquhoun, TA, Schwieterman, ML, Wedde, AE, Schimmel, BC, Marciniak, DM, Verdonk, JC, Kim, JY, Oh, Y, Gális, I, and Baldwin, IT, EOBII controls flower opening by functioning as a general transcriptomic switch. Plant physiology. 156(2): p. 974-984, 2011.
    75. Spitzer-Rimon, B, Farhi, M, Albo, B, Cna’ani, A, Zvi, MMB, Masci, T, Edelbaum, O, Yu, Y, Shklarman, E, and Ovadis, M, The R2R3-MYB–like regulatory factor EOBI, acting downstream of EOBII, regulates scent production by activating ODO1 and structural scent-related genes in petunia. The Plant Cell. 24(12): p. 5089-5105, 2012.
    76. Liu, F, Xiao, Z, Yang, L, Chen, Q, Shao, L, Liu, J, and Yu, Y, PhERF6, interacting with EOBI, negatively regulates fragrance biosynthesis in petunia flowers. New Phytologist: p. [Epub ahead of print], 2017.
    77. Ji, Y, Xiao, J, Shen, Y, Ma, D, Li, Z, Pu, G, Li, X, Huang, L, Liu, B, and Ye, H, Cloning and characterization of AabHLH1, a bHLH transcription factor that positively regulates artemisinin biosynthesis in Artemisia annua. Plant and Cell Physiology. 55: p. 1592-1604, 2014.
    78. Zhang, F, Fu, X, Lv, Z, Lu, X, Shen, Q, Zhang, L, Zhu, M, Wang, G, Sun, X, and Liao, Z, A basic leucine zipper transcription factor, AabZIP1, connects abscisic acid signaling with artemisinin biosynthesis in Artemisia annua. Molecular plant. 8(1): p. 163-175, 2015.
    79. Yu, Z-X, Li, J-X, Yang, C-Q, Hu, W-L, Wang, L-J, and Chen, X-Y, The jasmonate-responsive AP2/ERF transcription factors AaERF1 and AaERF2 positively regulate artemisinin biosynthesis in Artemisia annua L. Molecular Plant. 5(2): p. 353-365, 2012.
    80. Lv, Z, Wang, S, Zhang, F, Chen, L, Hao, X, Pan, Q, Fu, X, Li, L, Sun, X, and Tang, K, Overexpression of a Novel NAC Domain-Containing Transcription Factor Gene (AaNAC1) Enhances the Content of Artemisinin and Increases Tolerance to Drought and Botrytis cinerea in Artemisia annua. Plant and Cell Physiology. 57(9): p. 1961-1971, 2016.
    81. Lu, X, Zhang, L, Zhang, F, Jiang, W, Shen, Q, Zhang, L, Lv, Z, Wang, G, and Tang, K, AaORA, a trichome‐specific AP2/ERF transcription factor of Artemisia annua, is a positive regulator in the artemisinin biosynthetic pathway and in disease resistance to Botrytis cinerea. New Phytologist. 198(4): p. 1191-1202, 2013.
    82. Ma, D, Pu, G, Lei, C, Ma, L, Wang, H, Guo, Y, Chen, J, Du, Z, Wang, H, and Li, G, Isolation and characterization of AaWRKY1, an Artemisia annua transcription factor that regulates the amorpha-4, 11-diene synthase gene, a key gene of artemisinin biosynthesis. Plant and cell physiology. 50(12): p. 2146-2161, 2009.
    83. van Moerkercke, A, Steensma, P, Schweizer, F, Pollier, J, Gariboldi, I, Payne, R, Bossche, RV, Miettinen, K, Espoz, J, and Purnama, PC, The bHLH transcription factor BIS1 controls the iridoid branch of the monoterpenoid indole alkaloid pathway in Catharanthus roseus. Proceedings of the National Academy of Sciences. 112(26): p. 8130-8135, 2015.
    84. van Moerkercke, A, Steensma, P, Gariboldi, I, Espoz, J, Purnama, PC, Schweizer, F, Miettinen, K, Vanden Bossche, R, De Clercq, R, and Memelink, J, The basic helix‐loop‐helix transcription factor BIS2 is essential for monoterpenoid indole alkaloid production in the medicinal plant Catharanthus roseus. The Plant Journal. 88(1): p. 3-12, 2016.
    85. Li, CY, Leopold, AL, Sander, GW, Shanks, JV, Zhao, L, and Gibson, SI, CrBPF1 overexpression alters transcript levels of terpenoid indole alkaloid biosynthetic and regulatory genes. Frontiers in plant science. 6: p. 818, 2015.
    86. Zhang, H, Hedhili, S, Montiel, G, Zhang, Y, Chatel, G, Pré, M, Gantet, P, and Memelink, J, The basic helix‐loop‐helix transcription factor CrMYC2 controls the jasmonate‐responsive expression of the ORCA genes that regulate alkaloid biosynthesis in Catharanthus roseus. The Plant Journal. 67(1): p. 61-71, 2011.
    87. Li, CY, Leopold, AL, Sander, GW, Shanks, JV, Zhao, L, and Gibson, SI, The ORCA2 transcription factor plays a key role in regulation of the terpenoid indole alkaloid pathway. BMC plant biology. 13(1): p. 155, 2013.
    88. van der Fits, L and Memelink, J, ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science. 289(5477): p. 295-297, 2000.
    89. Paul, P, Singh, SK, Patra, B, Sui, X, Pattanaik, S, and Yuan, L, A differentially regulated AP2/ERF transcription factor gene cluster acts downstream of a MAP kinase cascade to modulate terpenoid indole alkaloid biosynthesis in Catharanthus roseus. New Phytologist. 213: p. 1107-1123, 2017.
    90. Suttipanta, N, Pattanaik, S, Kulshrestha, M, Patra, B, Singh, SK, and Yuan, L, The transcription factor CrWRKY1 positively regulates the terpenoid indole alkaloid biosynthesis in Catharanthus roseus. Plant physiology. 157(4): p. 2081-2093, 2011.
    91. Pauw, B, Hilliou, FA, Martin, VS, Chatel, G, de Wolf, CJ, Champion, A, Pré, M, van Duijn, B, Kijne, JW, and van der Fits, L, Zinc finger proteins act as transcriptional repressors of alkaloid biosynthesis genes in Catharanthus roseus. Journal of Biological Chemistry. 279(51): p. 52940-52948, 2004.
    92. Goossens, A, Mertens, J, Pollier, J, Bossche, RV, López-Vidriero, I, and Franco-Zorrilla, JM, The bHLH transcription factors TSAR1 and TSAR2 regulate triterpene saponin biosynthesis in Medicago truncatula. Plant physiology: p. pp. 01645.2015, 2015.
    93. Shen, S-L, Yin, X-R, Zhang, B, Xie, X-L, Jiang, Q, Grierson, D, and Chen, K-S, CitAP2. 10 activation of the terpene synthase CsTPS1 is associated with the synthesis of (+)-valencene in ‘Newhall’orange. Journal of experimental botany. 67(14): p. 4105-4115, 2016.
    94. Shang, Y, Ma, Y, Zhou, Y, Zhang, H, Duan, L, Chen, H, Zeng, J, Zhou, Q, Wang, S, and Gu, W, Biosynthesis, regulation, and domestication of bitterness in cucumber. Science. 346(6213): p. 1084-1088, 2014.
    95. Wang, Q, Reddy, VA, Panicker, D, Mao, HZ, Kumar, N, Rajan, C, Venkatesh, PN, Chua, NH, and Sarojam, R, Metabolic engineering of terpene biosynthesis in plants using a trichome‐specific transcription factor MsYABBY5 from spearmint (Mentha spicata). Plant biotechnology journal. 14: p. 1619-1632, 2016.
    96. Reddy, VA, Wang, Q, Dhar, N, Kumar, N, Venkatesh, PN, Rajan, C, Panicker, D, Sridhar, V, Mao, HZ, and Sarojam, R, Spearmint R2R3‐MYB transcription factor MsMYB negatively regulates monoterpene production and suppresses the expression of geranyl diphosphate synthase large subunit (MsGPPS. LSU). Plant Biotechnology Journal. 15(9): p. 1105-1119, 2017.
    97. Spyropoulou, EA, Haring, MA, and Schuurink, RC, Expression of Terpenoids 1, a glandular trichome-specific transcription factor from tomato that activates the terpene synthase 5 promoter. Plant molecular biology. 84(3): p. 345-357, 2014.
    98. Spyropoulou, EA, Haring, MA, and Schuurink, RC, RNA sequencing on Solanum lycopersicum trichomes identifies transcription factors that activate terpene synthase promoters. BMC genomics. 15(1): p. 402, 2014.
    99. Miyamoto, K, Nishizawa, Y, Minami, E, Nojiri, H, Yamane, H, and Okada, K, Overexpression of the bZIP transcription factor OsbZIP79 suppresses the production of diterpenoid phytoalexin in rice cells. Journal of plant physiology. 173: p. 19-27, 2015.
    100. Yamamura, C, Mizutani, E, Okada, K, Nakagawa, H, Fukushima, S, Tanaka, A, Maeda, S, Kamakura, T, Yamane, H, and Takatsuji, H, Diterpenoid phytoalexin factor, a bHLH transcription factor, plays a central role in the biosynthesis of diterpenoid phytoalexins in rice. The Plant Journal. 84(6): p. 1100-1113, 2015.
    101. Okada, A, Okada, K, Miyamoto, K, Koga, J, Shibuya, N, Nojiri, H, and Yamane, H, OsTGAP1, a bZIP transcription factor, coordinately regulates the inductive production of diterpenoid phytoalexins in rice. Journal of Biological Chemistry. 284(39): p. 26510-26518, 2009.
    102. Dudareva, N, Piechulla, B, and Pichersky, E, Biogenesis of floral scent. Hortic. Rev. 24(3): p. 31-54, 1999.
    103. Dudareva, N, Negre, F, Nagegowda, DA, and Orlova, I, Plant volatiles: recent advances and future perspectives. Critical reviews in plant sciences. 25(5): p. 417-440, 2006.
    104. Dudareva, N, Martin, D, Kish, CM, Kolosova, N, Gorenstein, N, Fäldt, J, Miller, B, and Bohlmann, J, (E)-β-ocimene and myrcene synthase genes of floral scent biosynthesis in snapdragon: function and expression of three terpene synthase genes of a new terpene synthase subfamily. The Plant Cell. 15(5): p. 1227-1241, 2003.
    105. Underwood, BA, Tieman, DM, Shibuya, K, Dexter, RJ, Loucas, HM, Simkin, AJ, Sims, CA, Schmelz, EA, Klee, HJ, and Clark, DG, Ethylene-regulated floral volatile synthesis in petunia corollas. Plant Physiology. 138(1): p. 255-266, 2005.
    106. Simkin, AJ, Underwood, BA, Auldridge, M, Loucas, HM, Shibuya, K, Schmelz, E, Clark, DG, and Klee, HJ, Circadian regulation of the PhCCD1 carotenoid cleavage dioxygenase controls emission of β-ionone, a fragrance volatile of petunia flowers. Plant Physiology. 136(3): p. 3504-3514, 2004.
    107. Hsu, PY, Devisetty, UK, and Harmer, SL, Accurate timekeeping is controlled by a cycling activator in Arabidopsis. Elife. 2: p. e00473, 2013.
    108. Farré, EM, Harmer, SL, Harmon, FG, Yanovsky, MJ, and Kay, SA, Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock. Current Biology. 15(1): p. 47-54, 2005.
    109. Schaffer, R, Ramsay, N, Samach, A, Corden, S, Putterill, J, Carré, IA, and Coupland, G, The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell. 93(7): p. 1219-1229, 1998.
    110. Mizoguchi, T, Wheatley, K, Hanzawa, Y, Wright, L, Mizoguchi, M, Song, H-R, Carré, IA, and Coupland, G, LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis. Developmental cell. 2(5): p. 629-641, 2002.
    111. McGregor, SE, Insect pollination of cultivated crop plants. Vol. 496. Agricultural Research Service, US Department of Agriculture Washington, DC, 1976.
    112. Jakobsen, HB and Olsen, CE, Influence of climatic factors on emission of flower volatiles in situ. Planta. 192(3): p. 365-371, 1994.
    113. Chuang, Y-C, Hung, Y-C, Tsai, W-C, Chen, W-H, and Chen, H-H, PbbHLH4 regulates floral monoterpene biosynthesis in Phalaenopsis orchids. Journal of experimental botany, 2018.
    114. Tholl, D, Biosynthesis and biological functions of terpenoids in plants, in Biotechnology of Isoprenoids. Springer. p. 63-106, 2015.
    115. Blight, MM, Le Métayer, M, Delègue, M-HP, Pickett, JA, Marion-Poll, F, and Wadhams, LJ, Identification of floral volatiles involved in recognition of oilseed rape flowers, Brassica napus by honeybees, Apis mellifera. Journal of Chemical Ecology. 23(7): p. 1715-1727, 1997.
    116. Huang, M, Sanchez‐Moreiras, AM, Abel, C, Sohrabi, R, Lee, S, Gershenzon, J, and Tholl, D, The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E)‐β‐caryophyllene, is a defense against a bacterial pathogen. New Phytologist. 193(4): p. 997-1008, 2012.
    117. Junker, RR, Gershenzon, J, and Unsicker, SB, Floral odor bouquet loses its ant repellent properties after inhibition of terpene biosynthesis. Journal of chemical ecology. 37(12): p. 1323-1331, 2011.
    118. Caputi, L and Aprea, E, Use of terpenoids as natural flavouring compounds in food industry. Recent patents on food, nutrition & agriculture. 3(1): p. 9-16, 2011.
    119. Chuang, Y-C, Lee, M-C, Chang, Y-L, Chen, W-H, and Chen, H-H, Diurnal regulation of the floral scent emission by light and circadian rhythm in the Phalaenopsis orchids. Botanical Studies. 58(1): p. 50, 2017.
    120. Su, C-L, Chao, Y-T, Chang, Y-CA, Chen, W-C, Chen, C-Y, Lee, A-Y, Hwa, KT, and Shih, M-C, De novo assembly of expressed transcripts and global analysis of the Phalaenopsis aphrodite transcriptome. Plant and cell physiology. 52(9): p. 1501-1514, 2011.
    121. Su, C-L, Chao, Y-T, Yen, S-H, Chen, C-Y, Chen, W-C, Chang, Y-CA, and Shih, M-C, Orchidstra: an integrated orchid functional genomics database. Plant and Cell Physiology. 54(2): p. e11-e11, 2013.
    122. Su, C-L, Chen, W-C, Lee, A-Y, Chen, C-Y, Chang, Y-CA, Chao, Y-T, and Shih, M-C, A modified ABCDE model of flowering in orchids based on gene expression profiling studies of the moth orchid Phalaenopsis aphrodite. PLoS One. 8(11): p. e80462, 2013.
    123. Pérez-Rodríguez, P, Riano-Pachon, DM, Corrêa, LGG, Rensing, SA, Kersten, B, and Mueller-Roeber, B, PlnTFDB: updated content and new features of the plant transcription factor database. Nucleic acids research. 38: p. D822-D827, 2009.
    124. Zheng, Y, Jiao, C, Sun, H, Rosli, HG, Pombo, MA, Zhang, P, Banf, M, Dai, X, Martin, GB, and Giovannoni, JJ, iTAK: A Program for Genome-wide Prediction and Classification of Plant Transcription Factors, Transcriptional Regulators, and Protein Kinases. Molecular Plant. 9(12): p. 1667-1670, 2016.
    125. Ernst, J and Bar-Joseph, Z, STEM: a tool for the analysis of short time series gene expression data. BMC bioinformatics. 7(1): p. 191, 2006.
    126. Heim, MA, Jakoby, M, Werber, M, Martin, C, Weisshaar, B, and Bailey, PC, The basic helix–loop–helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Molecular biology and evolution. 20(5): p. 735-747, 2003.
    127. Hsu, CC, Wu, PS, Chen, TC, Yu, CW, Tsai, WC, Wu, K, Wu, WL, Chen, WH, and Chen, HH, Histone acetylation accompanied with promoter sequences displaying differential expression profiles of B-class MADS-box genes for Phalaenopsis floral morphogenesis. PloS one. 9(12): p. e106033, 2014.
    128. Hsu, C-C, Chen, Y-Y, Tsai, W-C, Chen, W-H, and Chen, H-H, Three R2R3-MYB transcription factors regulate distinct floral pigmentation patterning in Phalaenopsis spp. Plant physiology. 168(1): p. 175-191, 2015.
    129. Cai, J, Liu, X, Vanneste, K, Proost, S, Tsai, WC, Liu, KW, Chen, LJ, He, Y, Xu, Q, and Bian, C, The genome sequence of the orchid Phalaenopsis equestris. Nature Genetics. 47(1): p. 65-72, 2015.
    130. Pan, ZJ, Chen, YY, Du, JS, Chen, YY, Chung, MC, Tsai, WC, Wang, CN, and Chen, HH, Flower development of Phalaenopsis orchid involves functionally divergent SEPALLATA‐like genes. New Phytologist. 202(3): p. 1024-1042, 2014.
    131. Hsieh, M-H, Pan, Z-J, Lai, P-H, Lu, H-C, Yeh, H-H, Hsu, C-C, Wu, W-L, Chung, M-C, Wang, S-S, and Chen, W-H, Virus-induced gene silencing unravels multiple transcription factors involved in floral growth and development in Phalaenopsis orchids. Journal of experimental botany. 64(12): p. 3869-3884, 2013.
    132. Chen, YH, Tsai, YJ, Huang, JZ, and Chen, FC, Transcription analysis of peloric mutants of Phalaenopsis orchids derived from tissue culture. Cell research. 15(8): p. 639-657, 2005.
    133. Pan, ZJ, Cheng, CC, Tsai, WC, Chung, MC, Chen, WH, Hu, JM, and Chen, HH, The duplicated B-class MADS-box genes display dualistic characters in orchid floral organ identity and growth. Plant and Cell Physiology. 52(9): p. 1515-1531, 2011.
    134. Lu, H-C, Chen, H-H, Tsai, W-C, Chen, W-H, Su, H-J, Chang, DC-N, and Yeh, H-H, Strategies for functional validation of genes involved in reproductive stages of orchids. Plant Physiology. 143(2): p. 558-569, 2007.
    135. Chow, CN, Zheng, HQ, Wu, NY, Chien, CH, Huang, HD, Lee, TY, Chiang-Hsieh, YF, Hou, PF, Yang, TY, and Chang, WC, PlantPAN 2.0: an update of plant promoter analysis navigator for reconstructing transcriptional regulatory networks in plants. Nucleic acids research. 44: p. D1154-D1160, 2015.
    136. Pan, Q, Mustafa, NR, Tang, K, Choi, YH, and Verpoorte, R, Monoterpenoid indole alkaloids biosynthesis and its regulation in Catharanthus roseus: a literature review from genes to metabolites. Phytochemistry reviews. 15(2): p. 221-250, 2016.
    137. Grabherr, MG, Haas, BJ, Yassour, M, Levin, JZ, Thompson, DA, Amit, I, Adiconis, X, Fan, L, Raychowdhury, R, and Zeng, Q, Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nature biotechnology. 29(7): p. 644, 2011.
    138. Chao, YT, Chen, WC, Chen, CY, Ho, HY, Yeh, CH, Kuo, YT, Su, CL, Yen, SH, Hsueh, HY, Yeh, JH, Hsu, HL, Tsai, YH, Kuo, TY, Chang, SB, Chen, KY, and Shih, MC, Chromosome‐level assembly, genetic and physical mapping of Phalaenopsis aphrodite genome provides new insights into species adaptation and resources for orchid breeding. Plant biotechnology journal, 2018.
    139. Chao, Y-T, Yen, S-H, Yeh, J-H, Chen, W-C, and Shih, M-C, Orchidstra 2.0-A Transcriptomics Resource for the Orchid Family. Plant & cell physiology, 2017.
    140. Van Schie, CC, Ament, K, Schmidt, A, Lange, T, Haring, MA, and Schuurink, RC, Geranyl diphosphate synthase is required for biosynthesis of gibberellins. The Plant Journal. 52(4): p. 752-762, 2007.
    141. Mertens, J, van Moerkercke, A, Bossche, RV, Pollier, J, and Goossens, A, Clade IVa Basic Helix–Loop–Helix Transcription Factors Form Part of a Conserved Jasmonate Signaling Circuit for the Regulation of Bioactive Plant Terpenoid Biosynthesis. Plant and Cell Physiology. 57(12): p. 2564-2575, 2016.
    142. Yu, L and Li, J, Pollen viability and stigma receptivity of Phalaenopsis. Chinese Agricultural Science Bulletin. 33(11): p. 54-58, 2017.
    143. Kanaoka, MM, Pillitteri, LJ, Fujii, H, Yoshida, Y, Bogenschutz, NL, Takabayashi, J, Zhu, J-K, and Torii, KU, SCREAM/ICE1 and SCREAM2 specify three cell-state transitional steps leading to Arabidopsis stomatal differentiation. The Plant Cell. 20(7): p. 1775-1785, 2008.
    144. Kim, YS, Lee, M, Lee, J-H, Lee, H-J, and Park, C-M, The unified ICE–CBF pathway provides a transcriptional feedback control of freezing tolerance during cold acclimation in Arabidopsis. Plant molecular biology. 89(1-2): p. 187-201, 2015.
    145. Hu, Y, Jiang, L, Wang, F, and Yu, D, Jasmonate regulates the inducer of CBF expression–c-repeat binding factor/DRE binding factor1 cascade and freezing tolerance in Arabidopsis. The Plant Cell. 25(8): p. 2907-2924, 2013.
    146. Erbilgin, N, Krokene, P, Christiansen, E, Zeneli, G, and Gershenzon, J, Exogenous application of methyl jasmonate elicits defenses in Norway spruce (Picea abies) and reduces host colonization by the bark beetle Ips typographus. Oecologia. 148(3): p. 426-436, 2006.
    147. Lundborg, L, Nordlander, G, Björklund, N, Nordenhem, H, and Borg-Karlson, A-K, Methyl Jasmonate-Induced Monoterpenes in Scots Pine and Norway Spruce Tissues Affect Pine Weevil Orientation. Journal of chemical ecology. 42(12): p. 1237-1246, 2016.
    148. Yoshitomi, K, Taniguchi, S, Tanaka, K, Uji, Y, Akimitsu, K, and Gomi, K, Rice terpene synthase 24 (OsTPS24) encodes a jasmonate-responsive monoterpene synthase that produces an antibacterial γ-terpinene against rice pathogen. Journal of plant physiology. 191: p. 120-126, 2016.
    149. Fäldt, J, Martin, D, Miller, B, Rawat, S, and Bohlmann, J, Traumatic resin defense in Norway spruce (Picea abies): methyl jasmonate-induced terpene synthase gene expression, and cDNA cloning and functional characterization of (+)-3-carene synthase. Plant molecular biology. 51(1): p. 119-133, 2003.
    150. Martin, D, Tholl, D, Gershenzon, J, and Bohlmann, J, Methyl jasmonate induces traumatic resin ducts, terpenoid resin biosynthesis, and terpenoid accumulation in developing xylem of Norway spruce stems. Plant physiology. 129(3): p. 1003-1018, 2002.
    151. Miller, B, Madilao, LL, Ralph, S, and Bohlmann, J, Insect-induced conifer defense. White pine weevil and methyl jasmonate induce traumatic resinosis, de novo formed volatile emissions, and accumulation of terpenoid synthase and putative octadecanoid pathway transcripts in Sitka spruce. Plant Physiology. 137(1): p. 369-382, 2005.
    152. Huageng, Y, Suliang, Y, Huijuan, C, Chongfa, Y, Fusun, Y, and Zifan, L, Effect of Exogenous Methyl Jasmonate, Calcium and Salicylic Acid on the Heat Tolerance in Phalaenopsis Seedlings Under High Temperature Stress [J]. Chinese Agricultural Science Bulletin. 28: p. 029, 2011.
    153. Zou, Q-C, Zhu, K-Y, Liu, H-C, Zhou, J-H, and Ma, G-Y, Effect of exogenous methyl jasmonate on chlorophyll fluorescence and antioxidant characteristics in the leaves of Phalaenopsis amabilis under abiotic stress. Plant Physiology Journal. 47(9): p. 913-917, 2011.
    154. Chen, M-Y, Effects of environmental factor, orchid mycorrhizal fungi and plant growth substances on the growth and flower quality of Phalaenopsis spp. with flower stalk after transport, in Department of Horticulture. National Taiwan University. p. 1-127, 2005.
    155. Dionísio, AP, Molina, G, de Carvalho, DS, dos Santos, R, Bicas, J, and Pastore, G, Natural flavourings from biotechnology for foods and beverages, in Natural Food Additives, Ingredients and Flavourings. Elsevier. p. 231-259, 2012.
    156. Martin, DM, Aubourg, S, Schouwey, MB, Daviet, L, Schalk, M, Toub, O, Lund, ST, and Bohlmann, J, Functional annotation, genome organization and phylogeny of the grapevine (Vitis vinifera) terpene synthase gene family based on genome assembly, FLcDNA cloning, and enzyme assays. BMC plant biology. 10(1): p. 226, 2010.
    157. Nieuwenhuizen, NJ, Green, SA, Chen, X, Bailleul, EJ, Matich, AJ, Wang, MY, and Atkinson, RG, Functional genomics reveals that a compact terpene synthase gene family can account for terpene volatile production in apple. Plant physiology. 161(2): p. 787-804, 2013.
    158. Falara, V, Akhtar, TA, Nguyen, TT, Spyropoulou, EA, Bleeker, PM, Schauvinhold, I, Matsuba, Y, Bonini, ME, Schilmiller, AL, and Last, RL, The tomato terpene synthase gene family. Plant physiology. 157(2): p. 770-789, 2011.
    159. Martin, DM and Bohlmann, J, Identification of Vitis vinifera (−)-α-terpineol synthase by in silico screening of full-length cDNA ESTs and functional characterization of recombinant terpene synthase. Phytochemistry. 65(9): p. 1223-1229, 2004.
    160. Toledo-Ortiz, G, Huq, E, and Quail, PH, The Arabidopsis basic/helix-loop-helix transcription factor family. The Plant Cell. 15(8): p. 1749-1770, 2003.
    161. Chuang, Y-C, Hung, Y-C, Hsu, C-Y, Yeh, C-M, Mitsuda, N, Ohme-Takagi, M, Tsai, W-C, Chen, W-H, and Chen, H-H, A dual repeat cis-element determines expression of GERANYL DIPHOSPHATE SYNTHASE for monoterpene production in Phalaenopsis orchids. Frontiers in Plant Science. 9: p. 765, 2018.
    162. Hammer, K, Carson, C, and Riley, T, Antifungal activity of the components of Melaleuca alternifolia (tea tree) oil. Journal of Applied Microbiology. 95(4): p. 853-860, 2003.
    163. Mirzaei-Najafgholi, H, Tarighi, S, Golmohammadi, M, and Taheri, P, The Effect of Citrus Essential Oils and Their Constituents on Growth of Xanthomonas citri subsp. citri. Molecules. 22(4): p. 591, 2017.
    164. Mumm, R, Posthumus, MA, and Dicke, M, Significance of terpenoids in induced indirect plant defence against herbivorous arthropods. Plant, cell & environment. 31(4): p. 575-585, 2008.
    165. Mitsuda, N, Ikeda, M, Takada, S, Takiguchi, Y, Kondou, Y, Yoshizumi, T, Fujita, M, Shinozaki, K, Matsui, M, and Ohme-Takagi, M, Efficient yeast one-/two-hybrid screening using a library composed only of transcription factors in Arabidopsis thaliana. Plant and cell physiology. 51(12): p. 2145-2151, 2010.
    166. Jakoby, M, Weisshaar, B, Dröge-Laser, W, Vicente-Carbajosa, J, Tiedemann, J, Kroj, T, and Parcy, F, bZIP transcription factors in Arabidopsis. Trends in plant science. 7(3): p. 106-111, 2002.
    167. Pyo, H, Demura, T, and Fukuda, H, Vascular cell expression patterns of Arabidopsis bZIP group I genes. Plant biotechnology. 23(5): p. 497-501, 2006.
    168. Tamura, K, Stecher, G, Peterson, D, Filipski, A, and Kumar, S, MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular biology and evolution. 30(12): p. 2725-2729, 2013.
    169. Tsai, C, Chiang, Y, Huang, S, Chen, C, and Chou, C, Molecular phylogeny of Phalaenopsis Blume (Orchidaceae) on the basis of plastid and nuclear DNA. Plant systematics and evolution. 288(1-2): p. 77-98, 2010.
    170. Tsai, CC, Molecular phylogeny, biogeography, and evolutionary trends of the genus Phalaenopsis (Orchidaceae). National Sun Yat-Sen University, 2003.
    171. Tsai, C-C, Molecular phylogeny and biogeography of Phalaenopsis species, in Orchid Biotechnology II. World Scientific. p. 1-24, 2011.
    172. Pelley, JW, Organization, Synthesis, and Repair of DNA, in Elsevier's Integrated Biochemistry, Pelley, JW, Editor., Mosby, 2007.
    173. Bhagavan, N and Ha, C-E, Structure and Properties of DNA, in Essentials of medical biochemistry: with clinical cases, Ha, C-E and Bhagavan, N, Editors., Academic Press, 2011.
    174. Chiu, L-W, Zhou, X, Burke, S, Wu, X, Prior, RL, and Li, L, The purple cauliflower arises from activation of a MYB transcription factor. Plant Physiology. 154(3): p. 1470-1480, 2010.
    175. Espley, RV, Brendolise, C, Chagné, D, Kutty-Amma, S, Green, S, Volz, R, Putterill, J, Schouten, HJ, Gardiner, SE, and Hellens, RP, Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples. The Plant Cell. 21(1): p. 168-183, 2009.
    176. Tian, J, Li, K-t, Zhang, S-y, Zhang, J, Song, T-t, Zhu, Y-j, and Yao, Y-c, The Structure and Methylation Level of the McMYB10 Promoter Determine the Leaf Color of Malus Crabapple. HortScience. 52(4): p. 520-526, 2017.
    177. Bao, W, Kojima, KK, and Kohany, O, Repbase Update, a database of repetitive elements in eukaryotic genomes. Mobile DNA. 6(1): p. 11, 2015.
    178. Jurka, J, Repeats in genomic DNA: mining and meaning. Current opinion in structural biology. 8(3): p. 333-337, 1998.
    179. Sas, C, Müller, F, Kappel, C, Kent, TV, Wright, SI, Hilker, M, and Lenhard, M, Repeated inactivation of the first committed enzyme underlies the loss of benzaldehyde emission after the selfing transition in Capsella. Current Biology. 26(24): p. 3313-3319, 2016.
    180. Brandvain, Y, Slotte, T, Hazzouri, KM, Wright, SI, and Coop, G, Genomic identification of founding haplotypes reveals the history of the selfing species Capsella rubella. PLoS genetics. 9(9): p. e1003754, 2013.
    181. Amrad, A, Moser, M, Mandel, T, de Vries, M, Schuurink, RC, Freitas, L, and Kuhlemeier, C, Gain and loss of floral scent production through changes in structural genes during pollinator-mediated speciation. Current Biology. 26(24): p. 3303-3312, 2016.
    182. Lu, S, Zhang, Y, Zheng, X, Zhu, K, Xu, Q, and Deng, X, Isolation and functional characterization of a lycopene β-cyclase gene promoter from citrus. Frontiers in plant science. 7: p. 1367, 2016.
    183. Kumar, S and Bhatia, S, A polymorphic (GA/CT) n-SSR influences promoter activity of Tryptophan decarboxylase gene in Catharanthus roseus L. Don. Scientific reports. 6: p. 33280, 2016.
    184. Gao, Z, Liu, C, Zhang, Y, Li, Y, Yi, K, Zhao, X, and Cui, M-L, The promoter structure differentiation of a MYB transcription factor RLC1 causes red leaf coloration in empire red leaf cotton under light. PloS one. 8(10): p. e77891, 2013.
    185. Bradbury, LM, Henry, RJ, Jin, Q, Reinke, RF, and Waters, DL, A perfect marker for fragrance genotyping in rice. Molecular Breeding. 16(4): p. 279-283, 2005.
    186. Garland, S, Lewin, L, Blakeney, A, Reinke, R, and Henry, R, PCR-based molecular markers for the fragrance gene in rice (Oryza sativa. L.). TAG Theoretical and Applied Genetics. 101(3): p. 364-371, 2000.
    187. Cordeiro, GM, Christopher, MJ, Henry, RJ, and Reinke, RF, Identification of microsatellite markers for fragrance in rice by analysis of the rice genome sequence. Molecular Breeding. 9(4): p. 245-250, 2002.
    188. Shi, W, Yang, Y, Chen, S, and Xu, M, Discovery of a new fragrance allele and the development of functional markers for the breeding of fragrant rice varieties. Molecular Breeding. 22(2): p. 185-192, 2008.
    189. Jin, Q, Waters, D, Cordeiro, GM, Henry, RJ, and Reinke, RF, A single nucleotide polymorphism (SNP) marker linked to the fragrance gene in rice (Oryza sativa L.). Plant science. 165(2): p. 359-364, 2003.
    190. Sakthivel, K, Rani, NS, Pandey, MK, Sivaranjani, A, Neeraja, C, Balachandran, S, Madhav, MS, Viraktamath, B, Prasad, G, and Sundaram, R, Development of a simple functional marker for fragrance in rice and its validation in Indian Basmati and non-Basmati fragrant rice varieties. Molecular breeding. 24(2): p. 185-190, 2009.
    191. Myint, KM, Arikit, S, Wanchana, S, Yoshihashi, T, Choowongkomon, K, and Vanavichit, A, A PCR-based marker for a locus conferring the aroma in Myanmar rice (Oryza sativa L.). Theoretical and applied genetics. 125(5): p. 887-896, 2012.
    192. Arikit, S, Yoshihashi, T, Wanchana, S, Tanya, P, Juwattanasomran, R, Srinives, P, and Vanavichit, A, A PCR-based marker for a locus conferring aroma in vegetable soybean (Glycine max L.). Theoretical and applied genetics. 122(2): p. 311-316, 2011.
    193. Juwattanasomran, R, Somta, P, Chankaew, S, Shimizu, T, Wongpornchai, S, Kaga, A, and Srinives, P, A SNP in GmBADH2 gene associates with fragrance in vegetable soybean variety “Kaori” and SNAP marker development for the fragrance. Theoretical and applied genetics. 122(3): p. 533-541, 2011.
    194. Juwattanasomran, R, Somta, P, Kaga, A, Chankaew, S, Shimizu, T, Sorajjapinun, W, and Srinives, P, Identification of a new fragrance allele in soybean and development of its functional marker. Molecular breeding. 29(1): p. 13-21, 2012.
    195. Yundaeng, C, Somta, P, Tangphatsornruang, S, Wongpornchai, S, and Srinives, P, Gene discovery and functional marker development for fragrance in sorghum (Sorghum bicolor (L.) Moench). Theoretical and applied genetics. 126(11): p. 2897-2906, 2013.
    196. Pramnoi, P, Somta, P, Chankaew, S, Juwattanasomran, R, and Srinives, P, A single recessive gene controls fragrance in cucumber (Cucumis sativus L.). Journal of genetics. 92(1): p. 147-149, 2013.
    197. Yundaeng, C, Somta, P, Tangphatsornruang, S, Chankaew, S, and Srinives, P, A single base substitution in BADH/AMADH is responsible for fragrance in cucumber (Cucumis sativus L.), and development of SNAP markers for the fragrance. Theoretical and applied genetics. 128(9): p. 1881-1892, 2015.
    198. Vongvanrungruang, A, Mongkolsiriwatana, C, Boonkaew, T, Sawatdichaikul, O, Srikulnath, K, and Peyachoknagul, S, Single base substitution causing the fragrant phenotype and development of a type-specific marker in aromatic coconut (Cocos nucifera). Genetics and molecular research: GMR. 15(3), 2016.
    199. Ruangnam, S, Wanchana, S, Phoka, N, Saeansuk, C, Mahatheeranont, S, de Hoop, SJ, Toojinda, T, Vanavichit, A, and Arikit, S, A deletion of the gene encoding amino aldehyde dehydrogenase enhances the “pandan-like” aroma of winter melon (Benincasa hispida) and is a functional marker for the development of the aroma. Theoretical and Applied Genetics. 130(12): p. 2557-2565, 2017.
    200. Saunders, D, Insect circadian rhythms and photoperiodism. Invertebrate Neuroscience. 3(2): p. 155-164, 1997.
    201. Hoballah, ME, Stuurman, J, Turlings, TC, Guerin, PM, Connetable, S, and Kuhlemeier, C, The composition and timing of flower odour emission by wild Petunia axillaris coincide with the antennal perception and nocturnal activity of the pollinator Manduca sexta. Planta. 222(1): p. 141-150, 2005.
    202. Fenske, MP and Imaizumi, T, Circadian rhythms in floral scent emission. Frontiers in plant science. 7: p. 462, 2016.
    203. Devlin, PF and Kay, SA, Cryptochromes are required for phytochrome signaling to the circadian clock but not for rhythmicity. The Plant Cell. 12(12): p. 2499-2509, 2000.
    204. McClung, CR, Plant circadian rhythms. The Plant Cell. 18(4): p. 792-803, 2006.
    205. Colquhoun, TA, Schwieterman, ML, Gilbert, JL, Jaworski, EA, Langer, KM, Jones, CR, Rushing, GV, Hunter, TM, Olmstead, J, and Clark, DG, Light modulation of volatile organic compounds from petunia flowers and select fruits. Postharvest Biology and Technology. 86: p. 37-44, 2013.
    206. Abe, H, Urao, T, Ito, T, Seki, M, Shinozaki, K, and Yamaguchi-Shinozaki, K, Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. The Plant Cell. 15(1): p. 63-78, 2003.
    207. Falara, V, Amarasinghe, R, Poldy, J, Pichersky, E, Barrow, RA, and Peakall, R, The production of a key floral volatile is dependent on UV light in a sexually deceptive orchid. Annals of botany. 111(1): p. 21-30, 2012.
    208. Fu, X, Chen, Y, Mei, X, Katsuno, T, Kobayashi, E, Dong, F, Watanabe, N, and Yang, Z, Regulation of formation of volatile compounds of tea (Camellia sinensis) leaves by single light wavelength. Scientific reports. 5: p. 16858, 2015.
    209. Lee, J, He, K, Stolc, V, Lee, H, Figueroa, P, Gao, Y, Tongprasit, W, Zhao, H, Lee, I, and Deng, XW, Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. The Plant Cell. 19(3): p. 731-749, 2007.
    210. Zhang, H, He, H, Wang, X, Wang, X, Yang, X, Li, L, and Deng, XW, Genome‐wide mapping of the HY5‐mediated genenetworks in Arabidopsis that involve both transcriptional and post‐transcriptional regulation. The Plant Journal. 65(3): p. 346-358, 2011.
    211. Luo, XM, Lin, WH, Zhu, S, Zhu, JY, Sun, Y, Fan, XY, Cheng, M, Hao, Y, Oh, E, and Tian, M, Integration of light-and brassinosteroid-signaling pathways by a GATA transcription factor in Arabidopsis. Developmental cell. 19(6): p. 872-883, 2010.
    212. Zhou, D-X, Regulatory mechanism of plant gene transcription by GT-elements and GT-factors. Trends in plant science. 4(6): p. 210-214, 1999.
    213. Alabadı́, D, Oyama, T, Yanovsky, MJ, Harmon, FG, Más, P, and Kay, SA, Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science. 293(5531): p. 880-883, 2001.
    214. Dodd, AN, Belbin, FE, Frank, A, and Webb, AA, Interactions between circadian clocks and photosynthesis for the temporal and spatial coordination of metabolism. Frontiers in plant science. 6: p. 245, 2015.
    215. Lau, OS and Deng, XW, The photomorphogenic repressors COP1 and DET1: 20 years later. Trends in plant science. 17(10): p. 584-593, 2012.
    216. Helsper, JP, Davies, JA, Bouwmeester, HJ, Krol, AF, and van Kampen, MH, Circadian rhythmicity in emission of volatile compounds by flowers of Rosa hybrida L. cv. Honesty. Planta. 207(1): p. 88-95, 1998.
    217. Picone, JM, Clery, RA, Watanabe, N, MacTavish, HS, and Turnbull, CG, Rhythmic emission of floral volatiles from Rosa damascena semperflorens cv.‘Quatre Saisons’. Planta. 219(3): p. 468-478, 2004.
    218. Picone, JM, MacTavish, HS, and Clery, RA, Emission of floral volatiles from Mahonia japonica (Berberidaceae). Phytochemistry. 60(6): p. 611-617, 2002.
    219. Hendel-Rahmanim, K, Masci, T, Vainstein, A, and Weiss, D, Diurnal regulation of scent emission in rose flowers. Planta. 226(6): p. 1491-1499, 2007.
    220. Dudareva, N, Andersson, S, Orlova, I, Gatto, N, Reichelt, M, Rhodes, D, Boland, W, and Gershenzon, J, The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers. Proceedings of the National Academy of Sciences of the United States of America. 102(3): p. 933-938, 2005.
    221. Tholl, D, Kish, CM, Orlova, I, Sherman, D, Gershenzon, J, Pichersky, E, and Dudareva, N, Formation of monoterpenes in Antirrhinum majus and Clarkia breweri flowers involves heterodimeric geranyl diphosphate synthases. The Plant Cell. 16(4): p. 977-992, 2004.
    222. Gangappa, SN and Botto, JF, The multifaceted roles of HY5 in plant growth and development. Molecular plant. 9(10): p. 1353-1365, 2016.
    223. Rodríguez-Concepción, M, Forés, O, Martínez-García, JF, González, V, Phillips, MA, Ferrer, A, and Boronat, A, Distinct light-mediated pathways regulate the biosynthesis and exchange of isoprenoid precursors during Arabidopsis seedling development. The Plant Cell. 16(1): p. 144-156, 2004.
    224. Zhang, H, Fan, P, Liu, C, Wu, B, Li, S, and Liang, Z, Sunlight exclusion from Muscat grape alters volatile profiles during berry development. Food chemistry. 164: p. 242-250, 2014.
    225. Zhang, E, Chai, F, Zhang, H, Li, S, Liang, Z, and Fan, P, Effects of sunlight exclusion on the profiles of monoterpene biosynthesis and accumulation in grape exocarp and mesocarp. Food Chemistry, 2017.
    226. Costantini, L, Kappel, CD, Trenti, M, Battilana, J, Emanuelli, F, Sordo, M, Moretto, M, Camps, C, Larcher, R, and Delrot, S, Drawing links from transcriptome to metabolites: the evolution of aroma in the ripening berry of Moscato Bianco (Vitis vinifera L.). Frontiers in plant science. 8: p. 780, 2017.
    227. Zhou, F, Sun, TH, Zhao, L, Pan, XW, and Lu, S, The bZIP transcription factor HY5 interacts with the promoter of the monoterpene synthase gene QH6 in modulating its rhythmic expression. Frontiers in plant science. 6: p. 304, 2015.
    228. Mannen, K, Matsumoto, T, Takahashi, S, Yamaguchi, Y, Tsukagoshi, M, Sano, R, Suzuki, H, Sakurai, N, Shibata, D, and Koyama, T, Coordinated transcriptional regulation of isopentenyl diphosphate biosynthetic pathway enzymes in plastids by phytochrome-interacting factor 5. Biochemical and biophysical research communications. 443(2): p. 768-774, 2014.

    無法下載圖示 校內:2023-08-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE