簡易檢索 / 詳目顯示

研究生: 楊博文
Yang, Bo-Wen
論文名稱: 界面層對有機太陽能電池開路電壓及短路電流之影響
Selection of interlayers on the open circuit voltage and short circuit current of organic solar cell
指導教授: 陳貞夙
Chen, Jen-Sue
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 124
中文關鍵詞: 有機太陽能電池開路電壓短路電流
外文關鍵詞: organic solar cell, open circuit voltage, short circuit current
相關次數: 點閱:77下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以P3HT:PCBM作為有機太陽能電池的主動層材料,首先使用兩種不同PSS/PEDOT比例的電洞傳輸層AI4083 及PH500 PEDOT:PSS,探討其對主動層垂直成分分佈的影響。接著在主動層及陰極金屬鋁之間加入五種不同的界面層: ZnO、TiO2、Al2O3、氧化鋅奈米粒子(ZnO NPs) 以及 LiF,試圖增加有機太陽能電池的短路電流及開路電壓。
    實驗使用紫外光-可見光光譜來觀察主動層中P3HT分子的共軛長度變化情形,以X光繞射分析偵測P3HT及兩種不同製程ZnO的結晶程度,並以接觸角分析儀量測各種薄膜的接觸角並換算其表面能,藉由表面能來判斷主動層表面成分分佈的情形,進而推得主動層中垂直成分分佈的狀況。利用原子力顯微鏡來觀察主動層上覆蓋不同界面層時的表面型態,並且經由相影像(phase image)來觀察主動層P3HT:PCBM混合薄膜中相分離的情況。此外使用表面電位儀可量測陰極金屬鋁的功函數。太陽能電池的光電轉換效率以及各項特徵參數是利用太陽能模擬器搭配雙極性電源電表量測得到的。
    經由接觸角分析所量測,可算得P3HT及PCBM薄膜表面能分別為29.20 mJ/m2以及56.77 mJ/m2。同樣藉由接觸角量測,當使用AI4083 PEDOT:PSS為電洞傳輸層時P3HT:PCBM主動層的表面能為29.92 mJ/m2,十分接近於P3HT的表面能,顯示此時P3HT:PCBM混合薄膜中表面成分多為P3HT,亦即主動層底部多為PCBM;當使用PH500 PEDOT:PSS時主動層的表面能為34.95 mJ/m2,相較於使用AI4083 PEDOT:PSS為電洞傳輸層,此時主動層中表面的P3HT比例降低,主動層底部的PCBM朝表面移動而提高表面PCBM/P3HT的比例。此主動層垂直分佈不同的原因,應與AI4083 PEDOT:PSS所含PSS比例較高,PSS與PCBM間的偶極偶極力較大相關。
    使用AI4083或PH500 PEDOT:PSS當作電洞傳輸層,插入一層界面層於主動層及陰極之間後,電性變化趨勢類似。當使用PH500 PEDOT:PSS時,使用溶液法製備ZnO、TiO2、Al2O3三種氧化物當做界面層,短路電流可分別提升至15.41 mA/cm2、13.46 mA/cm2以及11.34 mA/cm2。但添加的三種界面層對於開路電壓的提升並無效果,其開路電壓均屬於0.36~0.42 V的範圍內。當使用的界面層為ZnO NPs及LiF時,短路電流並無明顯提升,而開路電壓可分別提升至0.60 V及0.56 V。

    Two kinds of PEDOT:PSS (AI4083 and PH500) with different ratio were used as hole transport layer in the P3HT:PCBM organic solar cells to investigate the vertical composition distribution of active layer. And then five interlayers (ZnO, TiO2, Al2O3, ZnO NPs, LiF) were inserted between active layer and Al cathode individually to enhance the short circuit current and open circuit voltage of organic solar cells.
    UV-visible spectrophotometer was used to investigate the conjugation length of P3HT in the active layer. X-ray diffraction was employed to explore the crystallinity of P3HT and ZnO films of two different processes. Contact angle measurement was used to measure the contact angles of thin films and the contact angles were inverted into surface energies to investigate the lateral phase separation and more over, the vertical composition distribution. Atomic force microscopy was utilized to investigate the morphologies of active layers with different interlayers and the phase separation of active layers. Work function of Al cathode was extracted from surface potential microscopy. The efficiency and characteristic parameters were measured by solar simulator and multi-channel I-V test unit (Keithley 2400).
    The surface energy of P3HT and PCBM thin films were 29.20 mJ/m2 and 56.77 mJ/m2 respectively via contact angle measurement. The contact angle measurement also gave the surface energy of active layer which was 29.92 mJ/m2 when using AI4083 PEDOT:PSS as hole transport layer, almost the same as the surface energy of P3HT, revealing that P3HT was rich in the surface of P3HT:PCBM blend film; that is, PCBM was rich in the bottom of active layer. The surface energy of active layer was 34.95 mJ/m2 when using PH500 PEDOT:PSS as hole transport layer, showing that the component of P3HT decreased in the surface of active layer respect to the case of using AI4083 PEDOT:PSS; that is, PCBM in the bottom of active layer moved upward to the surface and then the PCBM/P3HT ratio increased. The difference of vertical distribution of P3HT:PCBM should be attributed to the higher PSS/PEDOT ratio of AI4083 PEDOT:PSS thus larger dipole-dipole force between PSS and PCBM.
    The trends of electrical characteristic were the same after inserting an interlayer between the active layer and cathode in the case of AI4083 PEDOT:PSS and PH500 PEDOT:PSS. When PH500 PEDOT:PSS was used, the short circuit current could be enhanced using solution processed ZnO, TiO2 or Al2O3 as interlayer, which were 15.41 mA/cm2, 13.46 mA/cm2 and 11.34 mA/cm2, but had no effect on the increase of open circuit voltage. The open circuit voltage were in the range of 0.36~0.42 V. Short circuit current did not increase obviously but open circuit voltage could reach to 0.60 and 0.56 V after inserting ZnO NPs and LiF as interlayer.

    第1章 緒論 1 1-1 背景 1 1-2 研究動機 2 第2章 理論基礎 3 2-1 太陽能光譜 3 2-2 太陽能電池原理 5 2-2.1 光電效應 5 2-2.2 二極體太陽能電池 7 2-2.2.1 理想太陽能電池 9 2-2.2.2 實際太陽能電池 13 2-3 太陽能電池簡介 14 2-4 有機太陽能電池 16 2-4.1 影響短路電流的原因 18 2-4.2 影響開路電壓的因素 19 2-5 表面能 21 第3章 實驗方法與步驟 23 3-1 實驗材料 23 3-1.1 基板(Substrate) 23 3-1.2 電洞傳輸層(Hole transport layer) 23 3-1.3 主動層(Active layer) 24 3-1.4 主動層與陰極鋁間的界面層(Interlayers between active layer and Al) 25 3-1.5 陰極(Cathode) 25 3-2 實驗設備 26 3-2.1 旋轉塗佈機(Spin coator) 26 3-2.2 紫外光臭氧清洗機(UV ozone cleaner) 26 3-2.3 熱蒸鍍機(Thermo evaporation system) 26 3-3 實驗流程 27 3-3.1 ITO之微影蝕刻 27 3-3.2 電洞傳輸層之製備 27 3-3.3 主動層之製備 28 3-3.4 主動層與陰極金屬間之界面層之製備 28 3-3.5 陰極金屬之製備 29 3-4 分析儀器 31 3-4.1 紫外光-可見光光譜儀 31 3-4.2 θ-2θ X光繞射儀 31 3-4.3 原子力顯微鏡 32 3-4.4 表面電位儀 32 3-4.5 低掠角X光繞射儀 35 3-4.6 X光光電子能譜儀 36 3-4.7 接觸角 36 3-4.8 穿透式電子顯微鏡 36 3-4.9 電性量測儀器 37 第4章 實驗結果與討論 39 4-1 元件結構 39 4-2 使用不同PEDOT:PSS之太陽能電池元件特性量測及分析 42 4-2.1 J-V曲線量測 42 4-2.2 紫外光-可見光吸收光譜分析 44 4-2.3 θ-2θ X光繞射分析 45 4-2.4 接觸角分析 47 4-2.5 原子力顯微鏡表面分析 54 4-3 主動層與陰極間界面層之材料特性鑑定分析 58 4-3.1 ZnO 62 4-3.2 TiO2 67 4-3.3 Al2O3 71 4-3.4 旋轉塗佈EGME 75 4-3.5 ZnO NPs 80 4-3.6 LiF 83 4-4 添加ZnO、TiO2、Al2O3界面層之太陽能電池元件特性量測及分析 85 4-4.1 J-V曲線量測 85 4-4.2 材料特性分析 92 4-4.2.1 紫外光-可見光吸收光譜分析 92 4-4.2.2 θ-2θ X光繞射分析 94 4-5 添加ZnO NPs、LiF界面層之太陽能電池元件特性量測及分析 96 4-5.1 J-V曲線量測 96 4-5.2 材料特性分析 101 4-5.2.1 表面電位儀 101 4-5.2.2 穿透式電子顯微鏡 105 4-5.2.3 紫外光-可見光吸收光譜分析 109 4-5.2.4 θ-2θ X光繞射分析 111 4-6 同時提升開路電壓及短路電流之太陽能電池 113 第5章 結論 117 第6章 參考文獻 119

    [1] D. M. Chapin, C. S. Fuller, and G. L. Pearson, "A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power," Journal of Applied Physics, 25, 676 (1954).
    [2] E. J. Spadafora, R. Demadrille, B. Ratier, and B. Grevin, "Imaging the Carrier Photogeneration in Nanoscale Phase Segregated Organic Heterojunctions by Kelvin Probe Force Microscopy," Nano Letters, 10, 3337 (2010).
    [3] M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P. G. Etchegoin, Y. Kim, T. D. Anthopoulos, P. N. Stavrinou, D. D. C. Bradley, and J. Nelson, "Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends," Nature Materials, 7, 158 (2008).
    [4] M. Shin, H. Kim, S. Nam, J. Park, and Y. Kim, "Influence of hole-transporting material addition on the performance of polymer solar cells," Energy & Environmental Science, 3, 1538 (2010).
    [5] H. Derouiche, H. B. Miled, and A. B. Mohamed, "Enhanced performance of a CuPc: PCBM based solar cell using bathocuproine BCP or nanostructured TiO2 as hole-blocking layer," Physica Status Solidi A, 207, 479 (2010).
    [6] S. Han, W. S. Shin, M. Seo, D. Gupta, S.-J. Moon, and S. Yoo, "Improving performance of organic solar cells using amorphous tungsten oxides as an interfacial buffer layer on transparent anodes," Organic Electronics, 10, 791 (2009).
    [7] J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, "New Architecture for High-Efficiency Polymer Photovoltaic Cells Using Solution-Based Titanium Oxide as an Optical Spacer," Advanced Materials, 18, 572 (2006).
    [8] W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, "Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology," Advanced Functional Materials, 15, 1617 (2005).
    [9] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, "High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends," Nature Materials, 4, 864 (2005).
    [10] J. K. Lee, W. L. Ma, C. J. Brabec, J. Yuen, J. S. Moon, J. Y. Kim, K. Lee, G. C. Bazan, and A. J. Heeger, "Processing Additives for Improved Efficiency from Bulk Heterojunction Solar Cells," Journal of the American Chemical Society, 130, 3619 (2008).
    [11] Z. Xu, L.-M. Chen, G. Yang, C.-H. Huang, J. Hou, Y. Wu, G. Li, C.-S. Hsu, and Y. Yang, "Vertical Phase Separation in Poly(3-hexylthiophene): Fullerene Derivative Blends and its Advantage for Inverted Structure Solar Cells," Advanced Functional Materials, 19, 1227 (2009).
    [12] J. Y. Oh, W. S. Jang, T. I. Lee, J.-M. Myoung, and H. K. Baik, "Driving vertical phase separation in a bulk-heterojunction by inserting a poly(3-hexylthiophene) layer for highly efficient organic solar cells," Applied Physics Letters, 98, 023303 (2011).
    [13] J. Nelson, "The physics of solar cells," London: Imperial College Press, 2003.
    [14] A. Luque and A. Hegedus, "Handbook of Photovotaic Science and Engineering," Hoboken, NJ: Wiley, 2003.
    [15] A. Beiser, "Concepts of Modern Physics," 6 ed Boston: McGraw-Hill, 2003.
    [16] http://www.e-tonsolar.com/,
    [17] National Renewable Energy Laboratory (NREL), http://www.nrel.gov
    [18] A. Moliton and J.-M. Nunzi, "How to model the behaviour of organic photovoltaic cells," Society of Chemical Industry, 55, 583 (2006).
    [19] P. W. M. Blom, V. D. Mihailetchi, L. J. A. Koster, and D. E. Markov, "Device Physics of Polymer:Fullerene Bulk Heterojunction Solar Cells," Advanced Materials, 19, 1551 (2007).
    [20] Y. Zhao, Z. Xie, Y. Qu, Y. Geng, and L. Wang, "Solvent-vapor treatment induced performance enhancement of poly(3-hexylthiophene):methanofullerene bulk-heterojunction photovoltaic cells," Applied Physics Letters, 90, 043504 (2007).
    [21] Y. Kinoshita, T. Hasobe, and H. Murata, "Control of open-circuit voltage in organic photovoltaic cells by inserting an ultrathin metal-phthalocyanine layer," Applied Physics Letters, 91, 083518 (2007).
    [22] C. S. Kim, L. L. Tinker, B. F. DiSalle, E. D. Gomez, S. Lee, S. Bernhard, and Y.-L. Loo, "Altering the Thermodynamics of Phase Separation in Inverted Bulk-Heterojunction Organic Solar Cells," Advanced Materials, 21, 3110 (2009).
    [23] B. Conings, S. Bertho, K. Vandewal, A. Senes, J. D'Haen, J. Manca, and R. A. J. Janssen, "Modeling the temperature induced degradation kinetics of the short circuit current in organic bulk heterojunction solar cells," Applied Physics Letters, 96, 163301 (2010).
    [24] M. S. Ryu and J. Jang, "Improvement of conversion efficiency of bulk heterojunction organic solar cells using photo-curable crosslinker," Solar Energy Materials and Solar Cells, 94, 1384 (2010).
    [25] R. Steim, F. R. Kogler, and C. J. Brabec, "Interface materials for organic solar cells," Journal of Materials Chemistry, 20, 2499 (2010).
    [26] C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, "Origin of the Open Circuit Voltage of Plastic Solar Cells," Advanced Functional Materials, 11, 374 (2001).
    [27] H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li, "Polymer solar cells with enhanced open-circuit voltage and efficiency," Nature Photonics, 3, 649 (2009).
    [28] A. W. Adamson原著, "表面物理化學," 台北市: 千華圖書出版事業有限公司, 民77.
    [29] D. K. Owens and R. C. Wendt, "Estimation of the surface free energy of polymers," Journal of Applied Polymer Science, 13, 1741 (1969).
    [30] D.Kasai, Innova Surface Potential Microscopy -Support Note 013-445-000, Rev. 01A.(Veeco, 2008).
    [31] G. Zhao, Y. He, and Y. Li, "6.5% Efficiency of Polymer Solar Cells Based on poly(3-hexylthiophene) and Indene-C60 Bisadduct by Device Optimization," Advanced Materials, 22, 4355 (2010).
    [32] W. H. Lee, S. Y. Chuang, H. L. Chen, W. F. Su, and C. H. Lin, "Exploiting optical properties of P3HT:PCBM films for organic solar cells with semitransparent anode," Thin Solid Films, 518, 7450 (2010).
    [33] D. E. Motaung, G. F. Malgas, and C. J. Arendse, "Comparative study: The effects of solvent on the morphology, optical and structural features of regioregular poly(3-hexylthiophene):fullerene thin films," Synthetic Metals, 160, 876 (2010).
    [34] W.-H. Baek, H. Yang, T.-S. Yoon, C. J. Kang, H. H. Lee, and Y.-S. Kim, "Effect of P3HT:PCBM concentration in solvent on performances of organic solar cells," Solar Energy Materials and Solar Cells, 93, 1263 (2009).
    [35] X. Bulliard, S.-G. Ihn, S. Yun, Y. Kim, D. Choi, J.-Y. Choi, M. Kim, M. Sim, J.-H. Park, W. Choi, and K. Cho, "Enhanced Performance in Polymer Solar Cells by Surface Energy Control," Advanced Functional Materials, 20, 4381 (2010).
    [36] J. W. Jung, J. W. Jo, and W. H. Jo, "Enhanced Performance and Air Stability of Polymer Solar Cells by Formation of a Self-Assembled Buffer Layer from Fullerene-End-Capped Poly(ethylene glycol)," Advanced Materials, 23, 1782 (2011).
    [37] K. Ohno and Y. Kawazoe, "Abnormal intermolecular interaction between overlayer C60 molecules due to induced dipole moments in C60 thin films adsorbed on substrates," Scripta Materialia, 44, 1579 (2001).
    [38] G. Chen, S. Ma, R. G. Cooks, H. E. Bronstein, M. D. Best, and L. T. Scott, "Electron affinities and C60 anion clusters of certain bowl-shaped polycyclic aromatic hydrocarbons," Journal of Mass Spectrometry, 32, 1305 (1997).
    [39] http://www.clevios.com/index.php?page_id=602
    [40] M. Dante, J. Peet, and T.-Q. Nguyen, "Nanoscale Charge Transport and Internal Structure of Bulk Heterojunction Conjugated Polymer/Fullerene Solar Cells by Scanning Probe Microscopy," The Journal of Physical Chemistry C, 112, 7241 (2008).
    [41] J. F. Moulder, W. F. Stiokle, P. E. Sohol, and K. D. Bomben, "Handbook of X-ray photoelectron spectroscopy," Minnesota: Physical Electronics Inc., 1995.
    [42] K. H. Lee, P. E. Schwenn, A. R. G. Smith, H. Cavaye, P. E. Shaw, M. James, K. B. Krueger, I. R. Gentle, P. Meredith, and P. L. Burn, "Morphology of All-Solution-Processed “Bilayer” Organic Solar Cells," Advanced Materials, 23, 766 (2011).
    [43] Y. Sun, J. H. Seo, C. J. Takacs, J. Seifter, and A. J. Heeger, "Inverted Polymer Solar Cells Integrated with a Low-Temperature-Annealed Sol-Gel-Derived ZnO Film as an Electron Transport Layer," Advanced Materials, 23, 1679 (2011).
    [44] C. Lee, C. Jin, H. Kim, and H. W. Kim, "The photoluminescence properties of TiO2-sheathed ZnSe nanowires," Current Applied Physics, 10, 1017 (2010).
    [45] K.-H. Lee, N.-I. Cho, E.-J. Yun, and H. G. Nam, "Characterization of ZnO thin films grown on various substrates by RF magnetron sputtering," Applied Surface Science, 256, 4241 (2010).
    [46] L. Jianguo, K. Huang, X. Chen, J. Zhu, F. Meng, X. Song, and Z. Sun, "Enhanced photo-induced hydrophilicity of the sol-gel-derived ZnO thin films by Na-doping," Applied Surface Science, 257, 2086 (2011).
    [47] Y. Wang, J. Fan, and M. Trenary, "Surface chemistry of boron oxidation. 1. Reactions of oxygen and water with boron films grown on tantalum(110)," Chemistry of Materials, 5, 192 (1993).
    [48] J. M. Wu, Y.-R. Chen, and Y.-H. Lin, "Rapidly synthesized ZnO nanowires by ultraviolet decomposition process in ambient air for flexible photodetector," Nanoscale, 3, 1053 (2011).
    [49] J. F. Chang and M. H. Hon, "The effect of deposition temperature on the properties of Al-doped zinc oxide thin films," Thin Solid Films, 386, 79 (2001).
    [50] Y. Zhao, T. Feltes, J. Regalbuto, R. Meyer, and R. Klie, "In-Situ Electron Energy Loss Spectroscopy Study of Mn-Promoted Co/TiO2 Fischer–Tropsch Catalysts," Catalysis Letters, 141, 641 (2011).
    [51] C. S. Yang, J. S. Kim, J. W. Choi, M. H. Kwon, Y. J. Kim, J. G. Choi, and G. T. Kim, "XPS Study of Aluminum Oxides Deposited on PET Thin Film XPS Study of Aluminum Oxides Deposited on PET Thin Film," Journal of Industrial and Engineering Chemistry, 6, 149 (2000).
    [52] M.-L. Tsai, P.-J. Chen, and J.-S. Do, "Preparation and characterization of Ppy/Al2O3/Al used as a solid-state capacitor," Journal of Power Sources, 133, 302 (2004).
    [53] V. Shrotriya, G. Li, Y. Yao, C.-W. Chu, and Y. Yang, "Transition metal oxides as the buffer layer for polymer photovoltaic cells," Applied Physics Letters, 88, 073508 (2006).
    [54] T. J. Vink, A. R. Balkenende, R. G. F. A. Verbeek, H. A. M. van Hal, and S. T. de Zwart, "Materials with a high secondary-electron yield for use in plasma displays," Applied Physics Letters, 80, 2216 (2002).
    [55] A. K. K. Kyaw, X. W. Sun, C. Y. Jiang, G. Q. Lo, D. W. Zhao, and D. L. Kwong, "An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer," Applied Physics Letters, 93, 221107 (2008).
    [56] C. J. Brabec, S. E. Shaheen, C. Winder, N. S. Sariciftci, and P. Denk, "Effect of LiF/metal electrodes on the performance of plastic solar cells," Applied Physics Letters, 80, 1288 (2002).
    [57] Y. Wang, L. Yang, C. Yao, W. Qin, S. Yin, and F. Zhang, "Enhanced performance and stability in polymer photovoltaic cells using lithium benzoate as cathode interfacial layer," Solar Energy Materials and Solar Cells, 95, 1243 (2011).
    [58] K. Asadi, P. de Bruyn, P. W. M. Blom, and D. M. de Leeuw, "Origin of the efficiency enhancement in ferroelectric functionalized organic solar cells," Applied Physics Letters, 98, 183301 (2011).
    [59] V. D. Mihailetchi, L. J. A. Koster, and P. W. M. Blom, "Effect of metal electrodes on the performance of polymer:fullerene bulk heterojunction solar cells," Applied Physics Letters, 85, 970 (2004).
    [60] I. Pino, M. Causa, and V. Barone, "Bottom-Up Approach to Innovative Memory Devices: II. Molecular Adsorption on Electrodes and the Asymmetric Response," The Journal of Physical Chemistry C, 114, 21439 (2011).
    [61] Y. H. Yitian Peng, and Weibing Lu, "Fabrication and Electrical Characterization of Multiwalled Carbon Nanotube-Based Circuit at Room Temperature," Journal of Nanomaterials, 2011, 297534 (2011).
    [62] L.-M. Chen, Z. Xu, Z. Hong, and Y. Yang, "Interface investigation and engineering - achieving high performance polymer photovoltaic devices," Journal of Materials Chemistry, 20, 2575 (2010).
    [63] D. Chen, A. Nakahara, D. Wei, D. Nordlund, and T. P. Russell, "P3HT/PCBM Bulk Heterojunction Organic Photovoltaics: Correlating Efficiency and Morphology," Nano Letters, 11, 561 (2010).
    [64] S. Heutz, P. Sullivan, B. M. Sanderson, S. M. Schultes, and T. S. Jones, "Influence of molecular architecture and intermixing on the photovoltaic, morphological and spectroscopic properties of CuPc-C60 heterojunctions," Solar Energy Materials and Solar Cells, 83, 229 (2004).
    [65] Y. Zhao, Z. Xie, C. Qin, Y. Qu, Y. Geng, and L. Wang, "Enhanced charge collection in polymer photovoltaic cells by using an ethanol-soluble conjugated polyfluorene as cathode buffer layer," Solar Energy Materials and Solar Cells, 93, 604 (2009).

    下載圖示 校內:2016-08-22公開
    校外:2016-08-22公開
    QR CODE