| 研究生: |
王温淨 Wang, Wen-Gine |
|---|---|
| 論文名稱: |
台灣股票市場Fama-French模型之等價性檢定及其應用 Testing the Equivalence of the Fama-French Model and Its Applications in Taiwan Stock Market |
| 指導教授: |
王明隆
Wang, Ming-Long Andrew 陳占平 Chen, Hubert J. |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
管理學院 - 財務金融研究所 Graduate Institute of Finance |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | Fama-French三因子模型 、Carhart四因子模型 、八因子模型 、風險與報酬 、兩組單邊檢定(等價性檢定) |
| 外文關鍵詞: | Fama-French three-factor model, Carhart four-factor model, Eight-factor model, Risk and return, Two one-sided tests (TOST) |
| 相關次數: | 點閱:224 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本篇論文研究Fama-French(1992, 1993, 1995)模型的三個解釋因子: 市場風險溢酬(MRP)、公司規模(SMB)、和公司淨值市價比(HML) 與基準項相比後,所帶出來的三個風險係數的風險變化範圍是否會落於所預設的風險區間之內。進而延伸到Carhart(1997)的四因子模型以及台灣特有的八因子模型。分析風險係數變化值的範圍及報酬率之間的抵換關係。從過去文獻得知三因子確實能大量解釋股票投資組合的報酬率,因此基於Fama-French的模型,以台灣股票市場為例,利用台灣經濟新報資料庫,依公司規模及公司淨值市價比作為投資組合的分類標準,創造六種類型的股票投資組合,以三因子模型測試六類股票投資組合報酬率變異的能量,發現三因子解釋能力高達93%至97%。因此本篇研究首先利用統計學上的等價性檢定(TOST)去分析六類投組的三因子的風險係數變化的範圍,探討風險和報酬之間的抵換關係。先以等價性檢定計算出六類投組每個風險係數的信賴區間(ER),再與實證上所預期的風險區間(EM)比較後做成投資參考。六類投組的特性與台灣50(ETF)的特性雷同,而ETF的值與市場很接近,所以將ETF的值視為風險係數的基準。因此所預設風險區間(EM)的計算為利用報酬率的最小變化量推出風險係數的最小變動量,此為風險區間的下界;再以台灣股市交易成本(約0.6%)反推回去得到風險係數的變動量,綜合風險區間的下界,即可得到風險區間的上界。此上下界即構成所謂的風險等價區間(EM)。比較ER與EM分析每類型股票投資組合特性以做為投資參考。
ABSTRACT
In this research the three-factor Fama-French regression model (1992, 1993, 1995) is investigated, in which the factors include the market risk premium (MRP), small-minus-big risk premium (SMB) and high-minus-low risk premium (HML) associated with the regression parameters , and its extensions to four-factor and eight-factor models. It is known that the MRP, SMB and HML can affect a stock portfolio’s return. Based on the Fama-French model, six types of stock portfolios (namely, BH, BL, BM, SH, SL, and SM) are created according to company size (Small or Big) and the ratio of book-to-market equity (High, Medium or Low). Using the data from the Taiwan Economic Journal (TEJ), a traditional multiple regression equation is proposed, which can explain the returns of six types of portfolios (BH, BL, BM, SH, SL, and SM) with R-square ranging from 93% to 97% based on these three explanatory factors. This study also tests the equivalence of the regression parameters using two one-sided tests (TOST) for all six types of portfolios under each factor using the TEJ data, the economically meaningful equivalence margins of these regression parameters are selected by investors in advance in order to achieve their investment goals. Similar analysis is made for four-factor and eight-factor models. The findings of this work can help investors better understand the common variations of stock portfolio returns, and thus make better decisions.
References
Ayyangar, L., 2007, Solutions to violations of assumptions of ordinary least squares regression model using SAS, SAS Global Forum paper 131-2007.
Black, F., Jensen, M. C., and Scholes, M., 1972, The capital asset pricing model: some empirical tests, 79–121 in Michael C. Jensen, ed., Studies in the Theory of Capital Markets. New York: Praeger Publishers.
Carhart, M. M., 1997, On persistence in mutual fund performance, Journal of Finance 52, 57-82.
Fama, E. F., Fisher, L., Jensen, M. C., and Roll, R., 1969, The adjustment of stock prices to new information, International Economic Review 10, 1-21.
Fama, E. F., and French, K. R., 1992a, The cross-section of expected stock returns, Journal of Finance 47, 427-465.
Fama, E. F., and French, K. R., 1992b, The economic fundamentals of size and book-to-market equity, working paper (Graduate School of Business, University of Chicago, Chicago, IL).
Fama, E. F., and French, K. R., 1993, Common risk factors in the returns on stocks and bonds, Journal of Financial Economics 33, 3-56.
Fama, E. F., and French, K. R., 1995, Size and book-to-market factors in earnings and returns, Journal of Finance 50, 131-155.
Guo, J. H., Chen, H. J., and Luh, W. M., 2011, Sample size planning with the cost constraint for testing superiority and equivalence of two independent groups, British Journal of Mathematical and Statistical Psychology 64, 439-461.
Im, K. S., Pesaran, M. H., and Shin, Y., 2003, Testing for unit roots in heterogeneous panels, Journal of Econometrics 115, 53-74.
Jensen, M. C., 1968, The Performance of Mutual Funds in the Period 1945-1964, Journal of Finance 23, 389-416.
Julious, S. A., 2004, Tutorial in biostatistics: sample sizes for clinical trials with normal data, Statistics in Medicine 23, 1921-1986.
Lintner, J., 1965a. Security prices, risk, and maximal gains from diversification, Journal of Finance 20, 587-615.
Lintner, J., 1965b. The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets, The Review of Economics and Statistics 47, 13-37.
Levin, A., Lin, F., and Chu, C., 2002, Unit root tests in panel data: asymptotic and finite-sample properties, Journal of Econometrics 108, 1-24.
Luzar-Stiffler, V., and Stiffler, C., 2002, Equivalence testing the easy way, Journal of Computing and Information Technology 10, 233-239.
Mossin, 1966, Equilibrium in a capital asset market, Econometrica 34, 768-783.
Montgomery, D. C., Peck, E. A., and Vining, G. G., 2001, Introduction to linear regression analysis, 3rd edition, New York: John Wiley & Sons.
Prudence, A. O., Patrick, E., Osei-Gyimah, F., and Opoku, C. D. K., 2013, An econometric analysis of the relationship between GDP growth rate and exchange rate in Ghana, Journal of Economics and Sustainable Development 4, 1-9.
Ross, S. A., 1976, The arbitrage theory of capital asset pricing, Journal of Economic Theory 13, 341-360.
Sharpe, W. F., 1964, Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk, Journal of Finance 19, 425-442.
Schuirmann, D. J., 1987, A comparison of the two one-sided tests procedure and the power approach for assessing the equivalence of average bioavailability, Journal of Pharmacokinetics and Biopharmaceutics 15, 657-680.
Shim, J. K., and Siegel, J. G., 1995, Dictionary of Economics, USA: John Wiley & Sons, Inc.
Stegner, A. L., Bostrom, A.G., and Greenfield, T. K., 1996, Equivalence testing for use in psychosocial and services research: An introduction with examples, Evaluation and Program Planning 19, 193–198.
Treynor, J. L., 1962, Toward a theory of market value of risky assets, unpublished manuscript. A final version was published in 1999, in asset pricing and portfolio performance: models, strategy and performance metrics. Robert A. Korajczyk (editor) London: Risk Books, 15-22.
White, H., 1980, A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity, Econometrica 48, 817–838.
Walker, E. and Nowacki, A. S., 2011, Understanding equivalence and noninferiority testing, Journal of General Internal Medicine 26, 192-196.
校內:2019-08-11公開