簡易檢索 / 詳目顯示

研究生: 黃同戊
-Wu, Tung
論文名稱: 裂紋面與裂紋線動態裂紋場之分析
Analysis of Dynamic Crack-Tip Fields on the Crack Line and Crack Faces
指導教授: 宋見春
Sung, Jen-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 75
中文關鍵詞: 正交異向性材料stroh公式單斜晶材料裂紋面裂紋線
外文關鍵詞: Orthotropic materials, Stroh formalism, crack faces, crack line, Monoclinic materials
相關次數: 點閱:106下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在探討異向性材料動態裂紋第I型擴展時,裂紋線及裂紋面之位移和應力兩者與擴展速度的關係,研究結果顯示,裂紋擴展速度對裂紋線及裂紋面之位移和應力是完全透過實數矩陣S(v)、L(v) 來影響的,由於此二實矩陣可以用彈性常數直接表出其顯式,且此二矩陣在退化材料亦適用,故本研究成果在動態裂紋擴展下,對裂紋線及裂紋面之位移和應力之了解應有助益。

    The aim of this paper is to analyze the effect of the speed of the dynamic propagating crack on the fields lying on the crack line and crack faces. It is found that this effect is completely through matrices S(v)and L(v).Since both matrices are able to be expressed explicitly in terms of the elastic stiffness for general anisotropic material, the effect of the propagating speed and material constants on the crack line and crack faces may be observed explicitly. Moreover, present results are valid even for degenerate materials.

    目錄 摘要........................................................Ⅰ Abstract....................................................Ⅱ 致謝........................................................Ⅲ 目錄........................................................Ⅳ 圖目錄......................................................Ⅵ 第一章 緒論............................................1 1.1 前言....................................................1 1.2 文獻回顧................................................2 1.3 本文綱要................................................3 第二章 基本公式........................................4 2.1 Stroh公式..............................................4 2.2 Stroh正交正規關係與 、 和 矩陣...............12 第三章 面內全場解問題...............................15 3.1 面內全場解問題.........................................15 3.2 正交異向性材料及數值範例...............................17 3.3 橫向等向性材料及數值範例...............................23 3.4 立方性材料及數值範例...................................26 第四章 裂紋線及裂紋面之問題........................30 4.1 具 =0對稱面之單斜晶材料裂紋線及裂紋面之分析...........34 4.2 具 =0對稱面之單斜晶材料裂紋線及裂紋面之分析 ..........42 4.3 具 =0對稱面之單斜晶材料裂紋線及裂紋面之分析...........48 4.4 正交異向性材料裂紋線及裂紋面之分析.....................54 第五章 結論............................................61 參考文獻....................................................62 附錄(A) ....................................................64 附錄(B) ....................................................66 附錄(C) ....................................................74

    [1] Achenbach, J.D., Bazant, Z.P., 1975, Elastodynamic near–tips stress and displacement fields for rapidly propagating cracks in orthotropic materials, Journal of Applied Mechanics, 183–189.

    [2] Dongye, C., Ting, T.C.T., 1989, Explicit expression of Barnett–Lothe tensors and their associated tensors for orthotropic materials, Quarterly of Applied Mathematics, 47, 723–734.

    [3] Freund, L.B., Clifton, R.J, 1974, On the uniqueness of Plane elastodynamic solutions for running cracks, Journal of Elasticity, 4, 293–299.

    [4] Liou, J.Y., Sung, J.C., 2007, Explicit expressions of S(v) H(v) and L(v) for anisotropic elastic materials, International Journal of Solids and Structures, 44, 8407–8423.

    [5] Liou, J.Y., Sung, J.C., 2008, Surface responses induced by point load or uniform traction moving steadily on an anisotropic half-plane, International Journal of Solids and Structures, 45, 2737–2757.

    [6] Nilsson, F., 1974, A note on the stress Singularity at a nonuniformly moving crack tip, Journal of Elasticity, 4, 73–75.

    [7] Muskhelishvili, N.I., 1953, Some Basic Problems of the Mathematical Theory of Elasticity, J.R. Radok, trans., Noordhoff, Groningen, The Netherlands.

    [8] Rice, J.R., 1968, Mathematical analysis in the mechanics of fracture, Fracture Vol II, H. Liebowitz, ed., Chapter 3, Academic Press, N.Y., 192–311

    [9] Stroh, A.N., 1958, Dislocations and crack in anisotropic elasticity, Philos. Mag., 3, 625–646.

    [10] Ting, T.C.T., 1996, Anisotropic Elasticity: Theory and Application, Oxford University Press, N.Y.

    [11] Wu, K.C., 1989, On the crack–tip fields of a dynamically propagating crack in an anisotropic elastic solid, International Journal of Fracture, 41, 253–266.

    [12] Wei, L., Ting, T.C.T., 1994, Explicit expressions of the Barnett–Lothe tensors for anisotropic materials, Journal of Elasticity, 36, 67–83

    下載圖示 校內:2009-07-24公開
    校外:2009-07-24公開
    QR CODE