| 研究生: |
周妤庭 Chou, Yu-Ting |
|---|---|
| 論文名稱: |
探討在深共熔溶劑中以可見藍光引發之可逆加成斷裂鏈轉移聚合對超高分子量聚甲基丙烯酸甲酯的高效聚合行為 Efficient Synthesis of Ultrahigh Molecular Weight PMMA via Visible Blue Light-Induced RAFT Polymerization Mediated by Deep Eutectic Solvent |
| 指導教授: |
游聲盛
Yu, Sheng-sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | 深共熔溶劑 、超高分子量 、甲基丙烯酸甲酯 、光引發之可逆加成斷裂鏈轉移聚合 |
| 外文關鍵詞: | ultrahigh molecular weight, methyl methacrylate, photoinduced RAFT polymerization, deep eutectic solvent |
| 相關次數: | 點閱:38 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要聚焦於在深共熔溶劑(deep eutectic solvent, DES)中之超高分子量(ultrahigh molecular weight, UHMW)聚甲基丙烯酸甲酯(poly(methyl methacrylate, PMMA))的高效聚合行為,並透過可見藍光引發可逆加成斷裂鏈轉移(reversible addition-fragmentation chain transfer, RAFT)聚合以達到控制分子量成長及分布的效果。與二甲基亞碸 (Dimethyl sulfoxide, DMSO)相比,UHMW PMMA在DES系統中的聚合速率及控制行為都更有效地提升。我們採用了多種聚合條件,包括不同溫度、光強度、鏈轉移劑(chain transfer agent, CTA)濃度和光誘導RAFT機制來探討各種變數對於反應的動力學影響。在其中發現了基於高分子量及高系統黏度所引發的凝膠效應,其進一步提升了反應速率,並在光誘導電子轉移(photoinduced electron/energy transfer-RAFT, PET-RAFT)反應中更為明顯。除此之外,若想成功控制聚合出UHMW PMMA,適當的光強、溫度及溶劑的選擇是至關重要的。而由於UHMW PMMA中的分子鏈糾纏強烈,其機械性質也呈現出比起低分子量PMMA更高的強度。簡而言之,本研究在相對較短的時間內於DES中以可見藍光引發RAFT聚合出具有控制行為的UHMW PMMA。
This work focuses on the synthesis of ultrahigh molecular weight (UHMW) poly(methyl methacrylate) (PMMA) through visible blue light-induced reversible addition-fragmentation chain transfer (RAFT) polymerization in a deep eutectic solvent (DES) composed of tetrabutylammonium chloride (TBACl) and ethylene glycol (EG). Compared to dimethyl sulfoxide (DMSO), the DES system exhibited an enhanced polymerization rate and control behavior. Various polymerization conditions, such as temperature, light intensity, chain transfer agent (CTA) concentration, and photoinduced RAFT (photo-RAFT) mechanisms, were investigated to study the kinetics. Surprisingly, the presence of a gel effect, attributed to high molar mass and high viscosity, resulted in an improved polymerization rate and more pronounced effects in the photoinduced electron/energy transfer-RAFT (PET-RAFT) compared to the photoiniferter-RAFT (PI-RAFT) system. To achieve a well-defined UHMW PMMA, optimal conditions, such as appropriate light intensity, temperature, and solvent selection, were crucial. Using the PET-RAFT system in DES under 0.42 mW/cm2 blue light intensity at 30 ℃, well-defined UHMW PMMA was successfully synthesized within 4 hours. Additionally, the significant entanglements in the UHMW PMMA gel demonstrated enhanced mechanical properties compared to PMMA with lower molar masses. In short, this work presents an unprecedented rapid synthesis of well-defined UHMW PMMA through photo-RAFT polymerization in a DES system.
1. Braunecker, W. A.; Matyjaszewski, K., Controlled/Living Radical Polymerization: Features, Developments, and Perspectives. Progress in Polymer Science 2007, 32 (1), 93-146.
2. Nicolasa, J.; Guillaneufb, Y.; Lefayb, C.; Bertinb, D.; Gigmesb, D.; Charleuxc, B., Nitroxide-Mediated Polymerization. Progress in Polymer Science 2012, 38 (1), 63-235.
3. Zhou, Y.-N.; Luo, Z.-H., State‐of‐the‐Art and Progress in Method of Moments for the Model‐Based Reversible‐Deactivation Radical Polymerization. Macromolecular Reaction Engineering 2016, 10 (6), 516-534.
4. Chiefari, J.; Chong, Y. K. B.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; Rizzardo, E.; Thang, S. H., Living Free-Radical Polymerization by Reversible Addition-Fragmentation Chain Transfer: The RAFT Process. Macromolecules 1998, 31 (16), 5559-5562.
5. Destarac, M., Industrial Development of Reversible-Deactivation Radical Polymerization: Is the Induction Period Over? Polymer Chemistry 2018, 9 (40), 4947-4967.
6. Engelis, N. G.; Anastasaki, A.; Nurumbetov, G.; Truong, N. P.; Nikolaou, V.; Shegiwal, A.; Whittaker, M. R.; Davis, T. P.; Haddleton, D. M., Sequence-controlled Methacrylic Multiblock Copolymers via Sulfur-Free RAFT Emulsion Polymerization. Nature Chemistry 2017, 9 (2), 171-178.
7. Matyjaszewski, K., Advanced Materials by Atom Transfer Radical Polymerization. Advanced Materials 2018, 30 (23), 1706441.
8. Lutz, J.-F.; Ouchi, M.; Liu, D. R.; Sawamoto, M., Sequence-controlled Polymers. Science 2013, 341 (6146), 1238149.
9. Parkatzidis, K.; Truong, N. P.; Antonopoulou, M. N.; Whitfield, R.; Konkolewicz, D.; Anastasaki, A., Tailoring Polymer Dispersity by Mixing Chain Transfer Agents in PET-RAFT Polymerization. Polymer Chemistry 2020, 11 (31), 4968-4972.
10. Gentekos, D. T.; Sifri, R. J.; Fors, B. P., Controlling Polymer Properties Through the Shape of the Molecular-Weight Distribution. Nature Reviews Materials 2019, 4 (12), 761-774.
11. Listak, J.; Jakubowski, W.; Matyjaszewski, K.; Mueller, L.; Plichta, A.; Bockstaller, M. R., Effect of Symmetry of Molecular Weight Distribution in Block Copolymers on Formation of “Metastable” Morphologies. Macromolecules 2008, 41 (15), 5919-5927.
12. Sun, Z.; Wang, M.; Li, Z.; Choi, B.; Mulder, R. J.; Feng, A.; Moad, G.; Thang, S. H., Versatile Approach for Preparing PVC-Based Mikto-Arm Star Additives Based on RAFT Polymerization. Macromolecules 2020, 53 (11), 4465-4479.
13. Xu, B.; Feng, C.; Huang, X., A Versatile Platform for Precise Synthesis of Asymmetric Molecular Brush in One Shot. Nature Communications 2017, 8 (1), 333.
14. Voit, B. I.; Lederer, A., Hyperbranched and Highly Branched Polymer Architectures—Synthetic Strategies and Major Characterization Aspects. Chemical Reviews 2009, 109 (11), 5924-5973.
15. Stenzel, M. H.; Davis., T. P., Star Polymer Synthesis Using Trithiocarbonate Functional β‐Cyclodextrin Cores (Reversible Addition–Fragmentation Chain‐Transfer Polymerization). Journal of Polymer Science Part A: Polymer Chemistry 2002, 40 (24), 4498-4512.
16. Daniel, W. F. M.; Burdynska, J.; Vatankhah-Varnoosfaderani, M.; Matyjaszewski, K.; Paturej, J.; Rubinstein, M.; Dobrynin, A. V.; Sheiko, S. S., Solvent-Free, Supersoft and Superelastic Bottlebrush Melts and Networks. Nature Materials 2016, 15 (2), 183-189.
17. Bosman, A. W.; Vestberg, R.; Heumann, A.; Fre´chet, J. M. J.; Hawker, C. J., A Modular Approach Toward Functionalized Three-Dimensional Macromolecules: From Synthetic Concepts to Practical Applications. Journal of the American Chemical Society 2003, 125 (3), 715-728.
18. Orilall, M. C.; Wiesner, U., Block Copolymer Based Composition and Morphology Control in Nanostructured Hybrid Materials for Energy Conversion and Storage: Solar Cells, Batteries, and Fuel Cells. Chemical Society Reviews 2011, 40 (2), 520-535.
19. Moad, G., RAFT Polymerization – Then and Now. American Chemical Society 2015, 211-246.
20. Hartlieb, M., Photo-Iniferter RAFT Polymerization. Macromolecular Rapid Communications 2022, 43 (1), 2100514.
21. Goto, A.; Fukuda, T., Kinetics of Living Radical Polymerization. Progress in Polymer Science 2004, 29 (4), 329-385.
22. Zhou, Y.-N.; Li, J.-J.; Wang, T.-T.; Wu, Y.-Y.; Luo, Z.-H., Precision Polymer Synthesis by Controlled Radical Polymerization: Fusing the Progress from Polymer Chemistry and Reaction Engineering. Progress in Polymer Science 2022, 130, 101555.
23. Opiyo, G.; Jin, J., Recent Progress in Switchable RAFT Agents: Design, Synthesis, and Application. European Polymer Journal 2021, 159, 110713.
24. Keddie, D. J.; Moad, G.; Rizzardo, E.; Thang, S. H., RAFT Agent Design and Synthesis. Macromolecules 2012, 45 (13), 5321-5342.
25. Moad, G.; Keddie, D.; Guerrero-Sanchez, C.; Rizzardo, E.; Thang, S. H., Advances in Switchable RAFT Polymerization. Macromolecular Symposia 2015, 350 (1), 34-42.
26. Keddie, D. J., A Guide to the Synthesis of Block Copolymers Using Reversible-Addition Fragmentation Chain Transfer (RAFT) Polymerization. Chemical Society Reviews 2014, 43 (2), 496-505.
27. Shim, S. E.; Lee, H.; Choe, S., Synthesis of Functionalized Monodisperse Poly(methyl methacrylate) Nanoparticles by a RAFT Agent Carrying Carboxyl End Group. Macromolecules 2004, 37 (15), 5565-5571.
28. Lueckerath, T.; Strauch, T.; Koynov, K.; Barner-Kowollik, C.; Ng, D. Y. W.; Weil, T., DNA-Polymer Conjugates by Photoinduced RAFT Polymerization. Biomacromolecules 2019, 20 (1), 212-221.
29. McKenzie, T. G.; Colombo, E.; Fu, Q.; Ashokkumar, M.; Qiao, G. G., Sono-RAFT Polymerization in Aqueous Medium. Angewandte Chemie International Edition 2017, 56 (40), 12302-12306.
30. Hu, Q.; Luo, Y.; Cao, X.; Chen, Z.; Huang, Y.; Niu, L., Bioinspired Electro-RAFT Polymerization for Electrochemical Sensing of Nucleic Acids. ACS Applied Materials & Interfaces 2021, 13 (46), 54794-54800.
31. Dai, X.; Yu, L.; Zhang, Y.; Zhang, L.; Tan, J., Polymerization-Induced Self-Assembly via RAFT-Mediated Emulsion Polymerization of Methacrylic Monomers. Macromolecules 2019, 52 (19), 7468-7476.
32. Xu, Q.; Zhang, Y.; Li, X.; He, J.; Tan, J.; Zhang, L., Enzyme Catalysis-Induced RAFT Polymerization in Water for the Preparation of Epoxy-Functionalized Triblock Copolymer Vesicles. Polymer Chemistry 2018, 9 (39), 4908-4916.
33. Hughes, R. W.; Lott, M. E.; Bowman, J. I.; Sumerlin, B. S., Excitation Dependence in Photoiniferter Polymerization. ACS Macro Letters 2023, 12 (1), 14-19.
34. Cabannes-Boué, B.; Yang, Q.; Lalevée, J.; Morlet-Savary, F.; Poly, J., Investigation Into the Mechanism of Photo-Mediated RAFT Polymerization Involving the Reversible Photolysis of the Chain-Transfer Agent. Polymer Chemistry 2017, 8 (11), 1760-1770.
35. Rong, L.-H.; Caldona, E. B.; Advincula, R. C., PET‐RAFT Polymerization Under Flow Chemistry and Surface‐Initiated Reactions. Polymer International 2022, 72 (2), 145-157.
36. Nomeir, B.; Fabre, O.; Ferji, K., Effect of Tertiary Amines on the Photoinduced Electron Transfer-Reversible Addition–Fragmentation Chain Transfer (PET-RAFT) Polymerization. Macromolecules 2019, 52 (18), 6898-6903.
37. Xu, J.; Jung, K.; Atme, A.; Shanmugam, S.; Boyer, C., A Robust and Versatile Photoinduced Living Polymerization of Conjugated and Unconjugated Monomers and Its Oxygen Tolerance. Journal of the American Chemical Society 2014, 136 (14), 5508-19.
38. Shanmugam, S.; Xu, J.; Boyer, C., Exploiting Metalloporphyrins for Selective Living Radical Polymerization Tunable over Visible Wavelengths. Journal of the American Chemical Society 2015, 137 (28), 9174-85.
39. Xu, J.; Shanmugam, S.; Duong, H. T.; Boyer, C., Organo-Photocatalysts for Photoinduced Electron Transfer-Reversible Addition–Fragmentation Chain Transfer (PET-RAFT) Polymerization. Polymer Chemistry 2015, 6 (31), 5615-5624.
40. Abbott, A. P.; Capper, G.; Davies, D. L.; Munro, H. L.; Rasheed, R. K.; Tambyrajah, V., Preparation of Novel, Moisture-Stable, Lewis-Acidic Ionic Liquids Containing Quaternary Ammonium Salts with Functional Side Chains. Chemical Communications 2001, (19), 2010-2011.
41. Smith, E. L.; Abbott, A. P.; Ryder, K. S., Deep Eutectic Solvents (DESs) and Their Applications. Chemical Reviews 2014, 114 (21), 11060-11082.
42. CatarinaFlorindo; Lu&sC.Branco; Marrucho, I. M., Quest for Green-Solvent Design: From Hydrophilic to Hydrophobic (Deep) Eutectic Solvents. ChemSusChem 2019, 12 (8), 1549-1559.
43. Bagh, F. S. G.; Shahbaz, K.; Mjalli, F. S.; AlNashef, I. M.; Hashim, M. A., Electrical Conductivity of Ammonium and Phosphonium Based Deep Eutectic Solvents: Measurements and Artificial Intelligence-Based Prediction. Fluid Phase Equilibria 2013, 356, 30-37.
44. Li, X.; Row, K. H., Development of Deep Eutectic Solvents Applied in Extraction and Separation. Journal of Separation Science 2016, 39 (18), 3505-20.
45. Płotka-Wasylka, J.; de la Guardia, M.; Andruch, V.; Vilková, M., Deep Eutectic Solvents vs Lonic Liquids: Similarities and Differences. Microchemical Journal 2020, 159, 105539.
46. Kareem, M. A.; Mjalli, F. S.; Hashim, M. A.; AlNashef, I. M., Phosphonium-Based Ionic Liquids Analogues and Their Physical Properties. Journal of Chemical & Engineering Data 2010, 55 (11), 4632-4637.
47. Fazende, K. F.; Gary, D. P.; Mota‐Morales, J. D.; Pojman, J. A., Kinetic Studies of Photopolymerization of Monomer‐Containing Deep Eutectic Solvents. Macromolecular Chemistry and Physics 2020, 221 (6), 1900511.
48. Maximiano, P.; Mendonc, P. ı. V.; Santos, M. R. E.; Costa, J. a. R. C.; Guliashvili, T.; Serra, A. e. C.; Coelho, J. F. J., Eutectic Mixtures As a Green Alternative for Efficient Catalyst Recycling in Atom Transfer Radical Polymerizations. Journal of Polymer Science Part A: Polymer Chemistry 2017, 55 (3), 371-381.
49. Wang, J.; Han, J.; Khan, M. Y.; He, D.; Peng, H.; Chen, D.; Xie, X.; Xue, Z., Deep Eutectic Solvents for Green and Efficient Iron-Mediated Ligand-Free Atom Transfer Radical Polymerization. Polymer Chemistry 2017, 8 (10), 1616-1627.
50. Olson, R. A.; Lott, M. E.; Garrison, J. B.; Davidson, C. L. G.; IV; Trachsel, L.; Pedro, D. I.; Sawyer, W. G.; Sumerlin, B. S., Homogeneous Polymerization of Hydrophobic Monomers in a Bio-Based DL-Menthol/1-Tetradecanol Eutectic Mixture by ATRP and RAFT Polymerization. Green Chemistry 2020, 22 (20), 6827-6835.
51. Li, C.-Y.; Yu, S.-S., Efficient Visible-Light-Driven RAFT Polymerization Mediated by Deep Eutectic Solvents under an Open-to-Air Environment. Macromolecules 2021, 54 (21), 9825-9836.
52. Hussain, M.; Nawaz, S.; Naqvi, R. A.; Abbas, N.; Khan, S. M.; Hussain, A.; Zahra, N.; Khalid, M., Ultra-High-Molecular-Weight-Polyethylene (UHMWPE) as a Promising Polymer Material for Biomedical Applications: A Concise Review. Polymers (Basel) 2020, 12 (2), 323.
53. Kamiyama, Y.; Tamate, R.; Hiroi, T.; Samitsu, S.; Fujii, K.; Ueki, T., Highly Stretchable and Self-Healable Polymer Gels from Physical Entanglements of Ultrahigh Molecular Weight Polymers. Science Advances 2022, 8 (42), eadd0226.
54. Gregorio, V.; García, N.; Tiemblo, P., Ionic Conductivity Enhancement in UHMW PEO Gel Electrolytes Based on Room-Temperature Ionic Liquids and Deep Eutectic Solvents. ACS Applied Polymer Materials 2022, 4 (4), 2860-2870.
55. An, Z., 100th Anniversary of Macromolecular Science Viewpoint: Achieving Ultrahigh Molecular Weights with Reversible Deactivation Radical Polymerization. ACS Macro Letters 2020, 9 (3), 350-357.
56. Carmean, R. N.; Becker, T. E.; Sims, M. B.; Sumerlin, B. S., Ultra-High Molecular Weights via Aqueous Reversible-Deactivation Radical Polymerization. Chem 2017, 2 (1), 93-101.
57. Lewis, R. W.; Evans, R. A.; Malic, N.; Saito, K.; Cameron, N. R., Ultra-Fast Aqueous Polymerisation of Acrylamides by High Power Visible Light Direct Photoactivation RAFT Polymerisation. Polymer Chemistry 2018, 9 (1), 60-68.
58. Carmean, R. N.; Sims, M. B.; Figg, C. A.; Hurst, P. J.; Patterson, J. P.; Sumerlin, B. S., Ultrahigh Molecular Weight Hydrophobic Acrylic and Styrenic Polymers through Organic-Phase Photoiniferter-Mediated Polymerization. ACS Macro Letters 2020, 9 (4), 613-618.
59. Fu, Q.; McKenzie, T. G.; Tan, S.; Nam, E.; Qiao, G. G., Tertiary Amine Catalyzed Photo-Induced Controlled Radical Polymerization of Methacrylates. Polymer Chemistry 2015, 6 (30), 5362-5368.
60. Jiao, Y.; Liu, K.; Wang, G.; Wangb, Y.; Zhang, X., Supramolecular Free Radicals: Near-Infrared Organic Materials With Enhanced Photothermal Conversion. Chemical Science 2015, 6 (7), 3975-3980.
61. Yanga, Y.; An, Z., Visible Light Induced Aqueous RAFT Polymerization Using a Supramolecular Perylene Diimide/Cucurbit[7]Uril Complex. Polymer Chemistry 2019, 10 (22), 2801-2811.
62. Li, R.; An, Z., Achieving Ultrahigh Molecular Weights with Diverse Architectures for Unconjugated Monomers through Oxygen-Tolerant Photoenzymatic RAFT Polymerization. Angewandte Chemie International Edition in English 2020, 59 (49), 22258-22264.
63. Olson, R. A.; Lott, M. E.; Garrison, J. B.; Davidson, C. L. G.; IV; Trachsel, L.; Pedro, D. I.; Sawyer, W. G.; Sumerlin, B. S., Inverse Miniemulsion Photoiniferter Polymerization for the Synthesis of Ultrahigh Molecular Weight Polymers. Macromolecules 2022, 55 (19), 8451-8460.
64. Pietrasik, J.; Hui, C. M.; Chaladaj, W.; Dong, H.; Choi, J.; Jurczak, J.; Bockstaller, M. R.; Matyjaszewski, K., Silica-Polymethacrylate Hybrid Particles Synthesized Using High-Pressure Atom Transfer Radical Polymerization. Macromolecular Rapid Communications 2011, 32 (3), 295-301.
65. Yuan, M.; Xu, L.; Cui, X.; Lv, J.; Zhang, P.; Tang, H., Facile Synthesis of Ultrahigh Molecular Weight Poly(Methyl Methacrylate) by Organic Halides in the Presence of Palladium Nanoparticles. Polymers (Basel) 2020, 12 (11), 2747.
66. Lamb, J. R.; Qin, K. P.; Johnson, J. A., Visible-Light-Mediated, Additive-Free, and Open-to-Air Controlled Radical Polymerization of Acrylates and Acrylamides. Polymer Chemistry 2019, 10 (13), 1585-1590.
67. Stempfle, B.; Dill, M.; Winterhalder, M. J.; Müllen, K.; Wöll, D., Single Molecule Diffusion and Its Heterogeneity During the Bulk Radical Polymerization of Styrene and Methyl Methacrylate. Polymer Chemistry 2012, 3 (9), 2456.
68. Nölle, J. M.; Primpke, S.; Müllen, K.; Vana, P.; Wöll, D., Diffusion of Single Molecular and Macromolecular Probes During the Free Radical Bulk Polymerization of MMA – Towards a Better Understanding of the Trommsdorff Effect on a Molecular Level. Polymer Chemistry 2016, 7 (24), 4100-4105.
69. Chernikovaa, E. V.; Terpugovaa, P. S.; Baskakova, A. A.; Plutalovaa, A. V.; Garinaa, E. S.; Sivtsovb, E. V., Pseudoliving radical polymerization of methyl methacrylate in the presence of S,S′-bis(methyl-2-isobutyrate) trithiocarbonate. Polymer Science Series B 2010, 52 (3-4), 119-128.
70. Quinn, J. F.; Barner, L.; Barner-Kowollik, C.; Rizzardo, E.; Davis, T. P., Reversible Addition Fragmentation Chain Transfer Polymerization Initiated with Ultraviolet Radiation. Macromolecules 2002, 35 (20), 7620-7627.
71. McKenzie, T. G.; Costa, L. P. d. M.; Fu, Q.; Dunstan, D. E.; Qiao, G. G., Investigation Into the Photolytic Stability of RAFT Agents and the Implications for Photopolymerization Reactions. Polymer Chemistry 2016, 7 (25), 4246-4253.
72. Bekanova, M. Z.; Neumolotov, N. K.; Jablanović, A. D.; Plutalova, A. V.; Chernikova, E. V.; Kudryavtsev, Y. V., Thermal Stability of RAFT-Based Poly(methyl methacrylate): A Kinetic Study of the Dithiobenzoate and Trithiocarbonate End-Group Effect. Polymer Degradation and Stability 2019, 164, 18-27.
73. Wang, H.; Li, Q.; Dai, J.; Du, F.; Zheng, H.; Bai, R., Real-Time and in Situ Investigation of “Living”/Controlled Photopolymerization in the Presence of a Trithiocarbonate. Macromolecules 2013, 46 (7), 2576-2582.
74. Figg, C. A.; Hickman, J. D.; Scheutz, G. M.; Shanmugam, S.; Carmean, R. N.; Tucker, B. S.; Boyer, C.; Sumerlin, B. S., Color-Coding Visible Light Polymerizations To Elucidate the Activation of Trithiocarbonates Using Eosin Y. Macromolecules 2018, 51 (4), 1370-1376.
75. Thurecht, K. J.; Licence, P.; Gooden, P. N.; Irvine, D. J., Free-Radical Polymerization in Ionic Liquids: The Case for a Protected Radica. Macromolecules 2008, 41 (8), 2814-2820.
76. Bradford, K. G. E.; Petit, L. M.; Whitfield, R.; Anastasaki, A.; Barner-Kowollik, C.; Konkolewicz, D., Ubiquitous Nature of Rate Retardation in Reversible Addition-Fragmentation Chain Transfer Polymerization. Journal of the American Chemical Society 2021, 143 (42), 17769-17777.
77. Chernikova, E. V.; Tarasenko, A. V.; Garina, E. S.; Golubev, V. B., Free-radical polymerization of methyl methacrylate in the presence of dithiobenzoates as reversible addition-fragmentation chain transfer agents. Polymer Science Series A 2008, 50 (4), 353-364.