簡易檢索 / 詳目顯示

研究生: 許玲芳
Hsu, Ling-Fang
論文名稱: 渦流產生器增強技術應用於鰭管式熱交換器之最佳化性能研究
Optimization Study of Fin and Tube Heat Exchanger with Vortex Generators
指導教授: 張錦裕
Jang, Jiin-Yuh
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 130
中文關鍵詞: 渦流產生器熱交換器最佳化
外文關鍵詞: vortex generator, heat exchanger, optimization
相關次數: 點閱:110下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 渦流產生器(vortex generator)係利用結合於熱交換器鰭片上之凸出物,使空氣流經時產生縱向渦漩(longitudinal vortices)以增進熱傳的裝置。本研究分別於板鰭片與矩形鰭片之鰭管式熱交換器上加裝塊狀型(block type)渦流產生器,並探討兩種不同排列方式-對齊式(in-lined)與交錯式(staggered)。在理論方面,假設三維穩態流場,探討固體表面(鰭片、管壁與渦流產生器)為定溫時,在不同正向風速下(1~4m/s),三維熱流場通道內溫度和壓力之變化。同時為求瞭解渦流產生器熱傳增強效果,將與不具渦流產生器之熱交換器相互比較。更進一步以數值方法探討渦流產生器展開角度(30°~60°)與擺放位置(渦流產生器前緣至管中心之橫向距離)(2~20mm)對熱交換器之熱傳因子(Colburn factor, j)與摩擦因子(Friction factor, f)的影響。另外,透過撰寫Fortran程式將計算流體力學(Computational Fluid Dynamics, CFD)商用軟體與最佳化方法-簡易共軛梯度法(Simplified Conjugate Gradient Method, SCGM)結合。以相同熱傳量與風扇功率下,熱交換器所能縮減之最大熱傳面積為目標函數,進行最佳化搜尋。
    理論分析結果發現,裝設渦流產生器於板鰭片與矩形鰭片上,(1)渦流產生器展開角度的影響為:當渦流產生器展開角度變大,熱傳因子j 與摩擦因子f 皆隨之增加。而(2)擺放位置的影響為:隨渦流產生器前緣至管中心之橫向距離的增大,熱傳因子j 與摩擦因子f 亦隨之增加。此外,增設渦流產生器於板鰭管式熱交換器上,影響對齊式排列之熱傳效果較交錯式排列大,但壓降亦相對地增加。
    而後經過最佳化搜尋找到最佳組合(展開角度介於34.9°~53.8°,擺放位置於5.5~19.0mm)。最佳化結果如下,對齊式板鰭片之熱傳因子j 相對於無渦流產生器之板鰭片約提升16.8~30.9%,然而,摩擦因子f 僅提升12.7~24.6%;面積縮減率可縮減15~26%之鰭片面積。而在交錯式板鰭片裡,熱傳因子j 增加8.0~12.8%,摩擦因子f僅增加6.0~10.1%;面積縮減率可縮減8~14 %。另一方面,對齊式矩形鰭片之熱傳因子j 相對於無渦流產生器之板鰭片約提高9.8%,而摩擦因子f 僅約提高3.9%,其面積縮減率則可縮減約15%之鰭片面積。

    A series of 3-D computational fluid dynamics analyses were carried out to study the thermal-hydraulic characteristics for the in-lined and staggered fin-tube heat exchangers with block type vortex generators mounted behind the tubes. Two types of heat exchangers were investigated in the study: (1) plate fin and tube heat exchangers and (2) rectangular fin and tube heat exchangers.
    Firstly, the effects of vortex generator span angles (θ) and transverse locations (Ly) on the heat transfer performance and pressure loss (in terms of j and f factors) at various frontal velocities, ranging from 1 to 4 m/s, were evaluated in detail. Furthermore, optimization was investigated respect to the span angle and transverse location of vortex generators by use of a simplified conjugate-gradient method (SCGM). A search for the optimum span angle (θ) and transverse distance (Ly), ranging from 30°< θ < 60° and 2 mm < Ly < 20 mm, respectively, is performed. The area reduction ratio of mounting vortex generators relative to the plate fin without vortex generators is the objective function to be maximized.
    The numerical results showed that the values of j and f factors were increased with increase of vortex generators’ span angle and transverse location. The influences on the plate-fin heat exchanger were more significant for the in-lined arrangement than the staggered arrangement. Optimization analyses provided the following conclusions: (1) For the in-lined plate-fin heat exchanger, the optimal θ and Ly are in the range of 48.8°~53.8° and 7.5~8.5 mm. The increases of j and f factors are 16.8~30.9% and 12.7~24.6%, respectively. The area reduction ratio could reach up to 15~26%. (2) For the staggered plate-fin heat exchanger, the optimal θ and Ly are in the range of 41.9°~52.6° and 5.5~7.5 mm. The increases of j and f factors are 8.0~12.8% and 6.0~10.1%, respectively. The optimum values of area reduction ratio are achieved at 8~14%. (3) For the in-lined rectangular-fin heat exchanger, the optimal θ and Ly are in the range of 34.9°~42.2° and 15.9~19.0 mm. The increases of j and f factors are about 9.8% and 3.9%, respectively. The area reduction ratio is about 15% at the optimum condition.

    摘要................................I Abstract..........................III 誌謝................................V 目錄...............................VI 表目錄............................VII 圖目錄...........................VIII 符號說明..........................XII 第一章 緒論.........................1 1.1 前言.........................1 1.2 文獻回顧......................2 1.3 研究動機與目的.................7 第二章 理論分析.....................16 2.1 物理模型及基本假設............16 2.2 統御方程式...................16 2.3 邊界條件.....................23 2.4 熱傳係數及阻力係數之計算.......24 2.5 熱交換器之性能評價方法(PEC)....25 第三章 最佳化理論及數值方法..........34 3.1 最佳化理論(簡易共軛梯度法).....34 3.2 數值方法.....................42 3.3 格點建立.....................50 3.4 格點獨立測試.................51 第四章 結果與討論...................59 4.1 板鰭管式熱交換器..............59 4.2 矩形鰭管式熱交換器............69 第五章 結論........................124 參考文獻...........................126

    [1]Rich, D. G., “The Effect of Fin Spacing on the Heat Transfer and Friction Performance of Multi-Row Plate Fin-and-Tube Heat Exchangers”, ASHRAE Trans., Vol.79, Part 2, pp.137-145, 1973.

    [2]Rich, D. G., “The Effect of the Number of Tube Rows on the Heat Transfer Performance of Smooth Plate Fin-and-Tube Heat Exchangers”, ASHRAE Trans., Vol.81, Part 1, pp.307-317, 1975.

    [3]Saboya, F. E. M., and Sparrow, E. M., “Local and Average Transfer Coefficients for One-Row Plate Fin-and-Tube Heat Exchanger Configurations”, J. fo Heat Transfer(ASME), Vol.96, pp.265-272, 1974.

    [4]Saboya, F. E. M., and Sparrow, E. M., “Transfer Characteristics of Twe-Row Plate Fin-and-Tube Heat Exchanger Configurations”, Int. J. Heat and Mass Transfer, Vol.19, pp.41-49, 1976.

    [5]Gray, D. L., and Webb, R. L., “Heat Transfer and Friction Correlations for Plate Fin-and-Tube Heat Exchangers Having Plain Fins”, Proc. 9th Int. Heat Transfer Conference, San Francisco, U. S. A., 1986

    [6]Jang, J. Y., Wu, M. C., and Chang, W. J., “Numerical and Experimental Studies of Three-Dimensional Plate Fin-and-Tube Heat Exchangers”, Int. J. Heat and Mass Transfer, Vol.39, No.14, pp.3057-3066, 1996.

    [7]Wang, C. C., Chi, K. U., and Chang, C. J., “Heat Transfer and Friction Characteristics of Plain Fin-and-Tube Heat Exchanger, PartI: New Experimental Data”, Int. J. Heat and Mass Transfer, 43, pp.2681-2691, 2000.

    [8]Wang, C. C., Chi, K. U., and Chang, C. J., “Heat Transfer and Friction Characteristics of Plain Fin-and-Tube Heat Exchanger, PartII: Correlation”, Int. J. Heat and Mass Transfer, 43, pp.2693-2700, 2000.

    [9]Threlkeld, J. L., “Thermal Environment Engineering”, 2nd Ed. New York: Prentice-Hall, 1970.

    [10]McQuiston, F. C., “Fin Efficiency with Combined Heat and Mass Transfer”, ASHRAE Transaction, Vol.71, pp.350-355, 1975.

    [11]Coney, J. E. R., Kazeminejad, H. and Sheppard, C. G. W., “Dehumidification of air on a Vertical Rectangular Fin: A Numerical Study”, Proc. Instn. Mech. Engrs., Vol.203, pp.141-146, 1989.

    [12]Coney, J. E. R., Sheppard, C. G. W. and Shafei, E. A. M., “Fin Performance with Dehumidification from Humid Air: A numerical Investigation”, International Journal of Heat & Fluid Flow, Vol.10, pp.224-231, 1989.

    [13]Chen, L. T., “Two-Dimensional Fin Efficiency with Combined Heat and Mass Transfer between Water-Wetted Fin Surface and Moving Moist Air Stream”, International Journal of Heat & Fluid Flow., Vol.12, pp.71-76, 1991.

    [14]Leu, J. S., Chen, S. L. and Jang, J.Y., “Heat Transfer and Fluid Flow in Rectangular Fin and Elliptic Tube Heat Exchangers under Dry and Dehumidifying Conditions”, Journal of Enhanced Heat Transfer, Vol.11, pp.43-60, 2004.

    [15]Jacobi, A. M., and Shah, R. K., “Heat Transfer Surfaces Enhancement through the Use of Longitudinal Vortices:A Review of Recent Progress”, Experimental Thermal and Fluid Science, Vol.11, pp.295-309, 1995.

    [16]Fiebig, M., “Vortices,Generators and Heat Transfer”, Trans. IChemE, Vol.76, Part A, pp.108-123, 1998.

    [17]Edwards, F. J., and Alker, G. J. R., “The Improvement of Forced Convection Surface Heat Transfer Using Surface Protrusions in the Form of (A) cubes and (B) Vortex Generators”, Proc. 5th Int.Heat Transfer Conf.,Tokyo, Vol.2, pp.244-248, 1974.

    [18]Fiebig, M., Mitra, N. K., and Dong, Y., “Simultaneous Heat transfer Enhancement and Flow Loss Reduction on Fin-Tubes”, Proc. 9th Int. Heat Transfer Conf., Vol.4, pp.51-56, 1990.

    [19]Tiggelbeck, S., Mitra, N. K., and Fiebig, M., “Experimental Investigation of Heat transfer Enhancement and Flow Losses in a channel with Double Rows of Longitudinal Vortex Generators”, International Journal of Heat Mass Transfer, Vol.36, No.9, pp.2327-2337, 1993.

    [20]Tiggelbeck, S., Mitra, N. K., and Fiebig, M., “Comparison of Wing-Type Vortex Generators for Heat Transfer Enhancement in Channel Flows”, ASME J. of Heat Transfer, Vol.116, pp.880-885, 1994.

    [21]Biswas, G., Mitra, N. K., and Fiebig, M., “Heat Transfer Enhancement in Fin-Tube Heat Exchangers by Winglet Type Vortex Generators”, International Journal of Heat and Mass Transfer, Vol.37, pp.283-291, 1994.

    [22]Fiebig, M., Valencia, A., and Mitra, N. K., “Wing-Type Vortex Generators for Fin-and-Tube Heat Exchangers”, Experimental Thermal and Fluid Science, Vol.7, pp.287-295, 1993.

    [23]Valencia, A., Fiebig, M., and Mitra, N. K., “Heat Transfer Enhancement by Longitudinal Vortices in a Fin-Tube Heat Exchanger Element with Flat Tubes”, ASME J. of Heat Transfer, Vol.118, pp.209-211, 1996.

    [24]Wang, C. C., Lo, J., Lin, Y. T. and Liu, M. S., “Flow Visualization of Wave-Type Vortex Generators Having Inline Fin-Tube Arrangement”, International Journal Heat and Mass Transfer, Vol.45, No.9, pp.1933-1944, 2002.

    [25]Lin, C. N. and Jang, J. Y., “Conjugate Heat Transfer and Fluid Flow Analysis in Fin-Tube Heat Exchangers with Wave-type Vortex Generators”, Journal of Enhanced Heat Transfer, Vol.9, pp.123-136, 2002.

    [26]Leu, J. S., Wu, Y. H. and Jang, J. Y., “Heat transfer and fluid flow analysis in plate-fin and tube heat exchangers with a pair of block shape vortex generators”, International Journal of Heat and Mass Transfer, Vol.47, pp.4327-4338, 2004.

    [27]Gorji, M., Mirgolbabaei, H., Barari, A., Domairry, G. and Nadim, N., “Numerical Analysis on Longitudinal Location Optimization of Vortex Generator in Compact Heat Exchangers”, Int. J. Numer. Meth. Fluids, 66, pp.705-713, 2011.

    [28]Tayal, C. M., Fu, Y., Diwekar, U. M., “Optimal design of heat exchangers: a genetic algorithm framework”, Industrial & Engineering Chemistry Research Vol.38, pp.456-467, 1999.

    [29]Fabbri, G., “Heat transfer optimization in corrugated wall channels”, International Journal of Heat and Mass Transfer Vol.43, pp.4299-4310, 2000.

    [30]Guo, J., Xu, M., and Cheng, Lin, “The application of field synergy number in shell-and-tube heat exchanger optimization design”, Applied Energy, Vol.86, pp.2079-2087, 2009.

    [31]Doodman, A. R., Fesanghary, M., and Hosseini, R., “A robust stochastic approach for design optimization of air cooled heat exchangers”, Applied Energy, Vol.86, pp.1240–1245, 2009.

    [32]Park, K., Choi, D. H., and Lee, K. S., “Optimum design of plate heat exchanger with staggered pin arrays”, Numerical Heat Transfer, Part A, Vol.45, pp.347-361, 2004.

    [33]Tang, L. H., Zeng, M., and Wang, Q. W., “Experimental and numerical investigation on air-side performance of fin-and-tube heat exchangers with various fin patterns”, Experimental Thermal and Fluid Science, Vol.33, pp.818-827, 2009.

    [34]Zeng, M., Tang, L. H., Lin, M., Wang, Q. W., “Optimization of heat exchangers with vortex-generator fin by Taguchi method”, Applied Thermal Engineering, Vol.30, pp.1775-1783, 2010.

    [35]Lemouedda, A., Breuer, M., Franz, E., Botsch, T. and Delgado, A., “Optimization of the Angle of Attack of Delta-Winglet Vortex Generators in a Plate-Fin-and-Tube Heat Exchanger”, International Journal Heat and Mass Transfer, 53, pp.5386-5399, 2010.

    [36]Jang, J. Y., and Hsieh, C. T., “Parametric study and optimization of louver finned-tube heat exchangers by Taguchi method”, Applied Thermal Engineering, Vol.42, pp.101-110, 2012.

    [37]Jang, J. Y. and Tsai, Y. C., “Optimum Louver Angle Design for a Louvered Fin Heat Exchanger”, International Journal of Physical Sciences, Vol.6, pp.6422-6438, 2011.

    [38]Launder, B. E., and Spalding, D. B., “Mathematical Models of Turbulence”, Chap.5, pp.90-100, Academic, London, 1972.

    [39]Launder, B. E., and Spalding, D. B., “The Numerical Computation of Turbulent Flows”, Computer Methods in Applied Mechanics and Engineering, 3, pp.269-289, 1974.

    [40]Viegas, J. R., Rubesin, M. W., and Horstman, C. C., “On the Use of Wall Functions as Boundary Conditions for Two-Dimensional Separated Compressible Flows”, Technical Report AIAA-85-0180, AIAA 23rd Aerospace Sciences Reno, Nevada, 1985.

    [41]Webb, R. L., “Principles of Enhanced Heat Transfer”, John Wiley and Sons, Inc, 1994.

    [42]Fletcher, R., and Reeves, C. M., “Function Minimization by Conjugate Gradients”, Computer Journal, 7, 149-154, 1964.

    [43]Cheng, C. H., and Chang, M. H., “A Simplified Conjugate-Gradient Method for Shape Identification Based on Thermal Data”, Numerical Heat Transfer, Part B, 43, 489-507, 2003.

    [44]Van Doormaal, J. P. and Raithby, F. D., “Enhancements of the SIMPLE Method Predicting Incompressible Fluid Flows”, Numerical heat Transfer Vol.7, pp.147-163, 1984.

    [45]Patankar, S. V., “Numerical Heat Transfer and Fluid Flow”, Hemisphere Publishing corpotation, 1984.

    [46]Thompson, J. F., Thames, F. C. and Mastin, C.W., “Automatic Numerical Generation of Boby-Fitted Curvilinear Coordinate System for Fields Containing and Number of Arbitrary Two-Dimensional Bodies”, Journal of Computational Physics, Vol.15, pp.299-310, 1974.

    [47]Thompson, J. F., Warsi, Z. U. A. and Mastin, C.W., “Numerical Grid Generation Foundations and Applications”, North Holland, 1985.

    無法下載圖示 校內:2017-07-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE