簡易檢索 / 詳目顯示

研究生: 黃廉凱
Huang, Lien-Kai
論文名稱: 基於機械手臂的木構築-傳統漢式大木構造構件的再現與應用
Robot-based Timber Tectonics-Reproduction and Application of Traditional Chinese Timber Structure Components
指導教授: 沈揚庭
Shen, Yang Ting
共同指導教授: 蔡侑樺
Tsai, Yu Hua
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 建築學系
Department of Architecture
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 70
中文關鍵詞: 枓栱漢式傳統木構造古蹟保存傳統工藝數位化建築資訊模型機械手臂製造銑削
外文關鍵詞: Bracket, Chinese Traditional Timber Structure, Monument Renovation, Traditional Crafts, Digitization, Building information Model, Robotic Fabrication, Milling
相關次數: 點閱:128下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 木構造在台灣的建築中非常常見,然而這種構造形式也同時面臨著不少的困境。隨著時代的變遷,台灣的建築產業型態也發生了巨大的轉變,使得傳統大木匠師的技藝傳承逐漸凋零,而修復速度又遠遠跟不上損壞的速度,因此對於木構造建築的形式和傳統技藝的保存成為當務之急。枓栱本身技術含量高,因此對於其構件的修復相當於必須有傳統匠師的技藝傳承。

    本研究發現台灣傳統木構造體系有幾個現象 1) 傳統建築元素的消逝 2) 傳統營建技術的消逝 3) 傳統工藝應用的消逝。而針對這三個現象提出了三個研究構面: 1) Timber tectonic(木構造) 2) Digital twin model(數位雙生模型) 3) 基於機器人的製造(Robot-base manufacture)。主要期望這些研究構面可以嘗試解決前面所提及的三個現象,首先要先了解傳統木構造本身的特徵,然後進行數位化的保存,再藉由這些數位化保存的資訊去進行後續所可能需要的修復或是再現,而這些構件的製造都需要藉助自動化製造的技術,尤其是再現各構件其特殊的加工方式,因此像客製化的部分需要借助機械手臂這樣的自動控制技術。

    因此本研究特別開發了一套循環方法,對漢式傳統木構造的構件逕行保存與傳承。並可以使用以下狀況:再現(Reproduction)、再創造(Recreation),能夠對讓傳統大木構造的技術得以保存與延續。所以又可以透過三個研究構面進行更深入的操作,首先進行考究及文獻探討,找出目標構造的型式與特徵;將目標構造構件進行BIM化,讓目標構件具有幾何資訊,爾後透過CAM軟體進行下一步的加工規劃,選定及模擬加工完成後,進行數位雙生的機械手臂姿態的模擬與加工環境參數的對照及設置,一切無誤後便可進行下一階段的做業;依照模擬進行真實加工,完成所有構件的製造後,便進行組裝測試。完成以上流程並且結果符合預期,便是完成一次的循環。

    透過實驗結果分析,本研究位於文資保存與機械人製造兩領域之間,對於處於數位時代的當下都是相當重要的議題,因此可能本研究在新式與傳統木構造之間有些許貢獻。其可能主要的貢獻有二: 1) 提供傳統木構造製造工藝額外的保存及傳承方法;2) 探索了機械人應用於傳統製造工藝的可能,為逐漸凋零的傳統建築領域提供了可能的潛力。

    Taiwanese architecture often features timber structures, but they currently face challenges due to changes in the construction industry and the decline of traditional carpentry skills. The preservation of timber structures and traditional craftsmanship is crucial, considering the slow progress of restoration compared to the rate of damage.
    This study identified several phenomena in Taiwan's traditional timber construction system: 1) Loss of local architectural features, 2) Loss of traditional construction techniques, and 3) Loss of traditional craft applications. To address these phenomena, three research dimensions were proposed: 1) Timber tectonic, 2) Digital twin model, and 3) Robot-based manufacture. The aim of these research dimensions is to understand the characteristics of traditional timber construction, digitally preserve it, and facilitate subsequent restoration or reproduction using automated manufacturing techniques, particularly in the customization of components using robotic control technology.
    Therefore, this study developed a cyclic method for the preservation and transmission of Chinese traditional timber construction components. It can be applied in reproduction and recreation to ensure the preservation and continuity of traditional timber construction techniques. Through the three research dimensions, a more in-depth approach can be undertaken. Firstly, a thorough examination and literature review are conducted to identify the typology and characteristics of the target structure. The target structure components are then transformed into BIM models to incorporate geometric information. Subsequently, CAM software is used for further processing planning, including selection and simulation. Digital twin models are employed to simulate the robotic arm's posture and compare and set the machining environment parameters. Once everything is confirmed to be correct, the actual manufacturing phase is carried out based on the simulation. After completing the production of all components, assembly testing is performed. Successful completion of these steps, aligned with the expected outcomes, represents one complete cycle.
    Through the analysis of experimental results, this study bridges the domains of cultural heritage preservation and robot-based manufacturing, addressing important issues in the digital era. It may contribute to the preservation and transmission of traditional timber construction techniques by providing additional methods. Furthermore, it explores the potential application of robotics in traditional manufacturing processes, offering possibilities for the gradually declining field of traditional architecture.

    Abstract I 摘要 II Acknowledgement III Contents V List of Table VII List of Figures VIII Chapter 1 Introduction 1 1.1 Background and motivation 1 1.2 Problem statement 2 1.3 Purpose statement 3 1.4 Methods overview 4 1.5 Outline 5 Chapter 2 State of the Art 6 2.1 Introduction 6 Preservation for traditional timber tectonics 6 2.2 Digitalize for traditional timber tectonics 11 2.2.1 Progress 12 2.2.2 Digital twin model 13 2.2.3 Summary and discussion 15 2.3 CNC manufacturing for traditional timber tectonics 16 2.3.1 Progress 16 2.3.2 Hundegger ROBOT-Drive CNC joinery machine 18 2.3.3 Summary and discussion 20 Chapter 3 Robot-based Timber Tectonics 21 3.1 Research dimensions 21 3.2 Research methodology 24 3.2.1 Research Framework 24 3.2.2 Manufacturing for traditional timber tectonics 26 Chapter 4 Reproduction of bracket 33 4.1 Methodology of reproduction 33 4.1.1 Background 33 4.1.2 Method 36 4.1.3 Robot-base manufacturing environment and tools 39 4.2 Record of the experiment procedure 42 4.2.1 Preserving bracket craftsmanship through digitalization 43 4.2.2 Reproducing bracket components through digital fabrication 46 4.3 Summary 49 Chapter 5 Conclusions 52 5.1 Summary and contributions 52 5.2 Outlook 53 5.2.1 Digital twin 53 5.2.2 Robot manufacture 54 5.3 Conclusion remark 54 Bibliography 55 Appendix 58 Table 0 1 Checklist for Reuse of Cultural Resources in Taiwan. 58 Table 0 2 Milling Data 60 The Athens Charter – 1931 61 The Venice Charter – 1964 65 The NARA document on Authenticity 69

    Book
    Ganguli, R., Adhikari, S., Chakraborty, S., & Ganguli, M. (2023). Digital Twin: A Dynamic System and Computing Perspective. CRC Press.
    Takabayashi, H., Kado, K., & Hirasawa, G. (2018). Versatile robotic wood processing based on analysis of parts processing of Japanese Traditional Wooden Buildings. In Robotic fabrication in architecture, art and design (pp. 221-231). Springer.
    李浈. (2004). 中国传统建筑木作工具. 同济大学出版社.
    李誡. (1103). 營造法式. https://zh.wikipedia.org/zh-tw/%E8%90%A5%E9%80%A0%E6%B3%95%E5%BC%8F
    姚承祖. (1986). 營造法原. 中國建築工業出版社.
    徐明福***, 蔡. (2020). 大木作:台灣傳統漢式建築-類型‧計畫‧施作. 文化部文化資產局.
    莊芳榮. (1983). 古蹟管理與維護. 臺灣學生書局.
    Journal Article
    Barata, P. M. (1999). Kenneth Frampton apropos tectonic: on the high-wire of a definition. arq: Architectural Research Quarterly, 3(2), 141-146. https://doi.org/https://doi.org/10.1017/S1359135500001925
    Chen, I.-H. (2004). 歷史與文化資產之於「過去」. 博物館學季刊, 18, 79-94.
    Kaewunruen, S., & Lian, Q. (2019). Digital twin aided sustainability-based lifecycle management for railway turnout systems. Journal of Cleaner Production, 228, 1537-1551.
    Macchi, M., Roda, I., Negri, E., & Fumagalli, L. (2018). Exploring the role of digital twin for asset lifecycle management. IFAC-PapersOnLine, 51(11), 790-795.
    Opoku, D.-G. J., Perera, S., Osei-Kyei, R., & Rashidi, M. (2021). Digital twin application in the construction industry: A literature review. Journal of Building Engineering, 40, 102726.
    Scheurer, F. (2007). Getting complexity organised: using self-organisation in architectural construction. Automation in construction, 16(1), 78-85.
    Scheurer, F. (2008). Architectural CAD/CAM-Pushing the Boundaries of CNC-Fabrication in Building. Manufacturing Material Effects-Rethinking Design and Making in Architecture, 211-222.
    Scheurer, F. (2009). Architectural algorithms and the renaissance of the design pattern. Pattern: Ornament, structure and behavior. Basel: Birkhäuser, 41-55.
    Shafto, M., Conroy, M., Doyle, R., Glaessgen, E., Kemp, C., LeMoigne, J., & Wang, L. (2012). Nasa technology roadmap: Modeling, simulation. Information Technology & Processing Roadmap Technology Area, 11.
    Shy, G.-l. (2012). An Investigation of Experience with, and Coping Strategies for, Sustainable Development of Cultural Heritage in Taiwan from the Perspective of World Heritage. Journal of Cultural Heritage Conservation(21), 5-22. https://doi.org/10.6941/JCHC.201209_(21).0001
    王宇旸. (2021). 浅谈古今木构建筑的营造技术与设计. 屋舍, 93-94. https://www.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2021&filename=JUSH202101047&uniplatform=OVERSEA&v=pv1R4giwQg8Dv9j1qLs8_zL3dwVUeTb6qPPJAkKPZLz1uScFkpwsc8sqTC5JkuF6
    李汾陽. (2008). 臺灣文化資產保存的發展與特質 1984-2007. 通識研究集刊(13), 57-75.
    林一宏. (2011). 臺灣文化資產保存歷程概要. 國立臺灣博物館學刊, 64(1), 75-106.
    林宜君*, & 徐明福***, 吳. (2009). 應用三維雷射掃瞄圖資解析臺灣傳統厝基本空間尺度構成之邏輯—以臺南縣東山鄉穿鬬式厝為例. 建築學報, 68.
    蔡育林. (2020). 留得青山—有形文化資產 3D 掃描建模基礎資料建置. 文化資產保存學刊(51), 93-99.
    Conference Proceeding
    Holler, M., Uebernickel, F., & Brenner, W. (2016). Digital twin concepts in manufacturing industries-a literature review and avenues for further research. Proceedings of the 18th International Conference on Industrial Engineering (IJIE), Seoul, Korea,
    Schindler, C. (2007). Information-Tool-Technology: Contemporary digital fabrication as part of a continuous development of process technology as illustrated with the example of timber construction. Proceedings of the 27th ACADIA Conference,
    Yang-Ting Shen, M.-C. W., Lien-Kai Huang, You-Min Gao, Chia-Chin Yen. (2022). The Development of Robot-based Fabrication Apply to the Reproduction of Chinese Traditional Timber Structure. ACADIA(Association for Computer Aided Design in Architecture ), UPenn, Philadelphia, PA, USA.
    Zhao, J., Lombardi, D., Chen, H., & Agkathidis, A. (2021). Reinterpretation of the Dougong joint by the use of parametric tools and robotic fabrication techniques. Proceedings of the 39th International Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe),
    Website
    AG, H. H. (2023). Hundegger ROBOT-Drive. Hans Hundegger AG. Retrieved 24, May from https://www.hundegger.com/fileadmin/user_upload/Prospekte/ROBOT_Drive/ROBOT_Drive_EN_27_04_2023/page.pdf
    Unkonw. (2020). 什么是抬梁式、穿斗式、井干式建筑? 搜狐. Retrieved 11.11 from https://www.sohu.com/a/431149920_186299
    建筑史学刊. (2022). 学术丨南禅寺大殿重建背景、材分营造制度分析及建筑像设空间布局研究. 澎湃. Retrieved Jul, 07 from https://www.thepaper.cn/newsDetail_forward_18883877
    Other Document
    Adel, A., Augustynowicz, E., & Wehrle, T. (2022). Robotic Timber Construction: A Case Study Structure.
    Athens Charter for the Restoration of Historic Monuments. (1931). Athens: CIAM Retrieved from https://www.icomos.org/en/charters-and-texts/179-articles-en-francais/ressources/charters-and-standards/167-the-athens-charter-for-the-restoration-of-historic-monuments
    Raymond Lemaire, H. S. (1993). THE NARA DOCUMENT ON AUTHENTICITY. Nara, Japan Retrieved from http://whc.unesco.org/events/gt-zimbabwe/nara.htm
    The Venice Charter. (1964). Venice: ICOMOS
    卓怡君. (2023). 文化資產統計表. Taiwan: Ministry of Culture Retrieved from https://stat.moc.gov.tw/ImportantPointer_LatestDownload.aspx?sqno=4
    教育廳之公文. (1955). Taiwan: R.O.C Government Retrieved from https://www.twmemory.org/?p=10695
    梁思成. (1937). Names of Principal Parts of A Chinese Building. In. China.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE