| 研究生: |
蒲盈志 Pu, Ying-Chih |
|---|---|
| 論文名稱: |
合成具有水解性質的硫酸鈉奈米線可用於製備多電荷高分子及金屬奈米管的多功能模版 Water Dissolvable Sodium Sulfate Nanowires as a Versatile Template for the Synthesis of Polyelectrolyte and Metal-Based Nanotubes |
| 指導教授: |
葉晨聖
Yeh, Chen-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 硫酸鈉 、奈米線 、模版合成 、奈米管 |
| 外文關鍵詞: | nanowire, la, sodium sulfate, Template synthesis |
| 相關次數: | 點閱:101 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
本論文為首例提出合成水解性的硫酸鈉奈米線,其合成方式主要是利用化學迴流法在有機溶劑二甲基甲醯胺中合成,而且參與其中的各種化學物質十二烷基硫酸鈉、氯化亞錫、硝酸銀與十六烷基-三甲基-溴化銨皆對於形成硫酸鈉奈米線有所貢獻。研究中發現十二烷基硫酸鈉在二甲基甲醯胺的環境中進行迴流會進行反應而產生硫酸鈉,錫離子與硝酸根則扮演著形成一維結構的硫酸鈉奈米線與使硫酸鈉奈米線均勻化的角色,而十六烷基-三甲基-溴化銨則是扮演著形成模版的角色使硫酸鈉奈米線的表面趨於平滑。由於硫酸鈉為電解質,而且是可溶於水的鹽類物質,因此利用硫酸鈉奈米線作為「模版合成」中的模版,覆蓋上目標材料,最後再以「水」把硫酸鈉奈米線溶解就形成我們想得到的奈米管。本論文中成功的以硫酸鈉奈米線作為模版使金奈米粒子自組裝形成金奈米管,並利用Layer-by-Layer的方式的合成出具有生物相容性的高分子奈米管。其中金奈米粒子與高分子聚乙烯亞胺及聚丙烯酸皆為形成奈米管的建構單元,吸附於一維模板-硫酸鈉奈米線上,形成奈米管之後再用水輕易的將硫酸鈉奈米線溶解移除。水溶性模版的概念對於合成奈米管是相當簡便又不危害人體與環境的方式,再搭配上不同的合成方式,將能使水溶性模版-硫酸鈉奈米線擁有更廣泛及多功能性的應用。
Abstract
We have presented the synthesis of water dissolvable sodium sulfate nanowires for the first time. Na2SO4 nanowires were produced by an easy reflux process in an organic solvent, N,N-dimethylformamide (DMF) and were derived from the co-existence of AgNO3, SnCl2, SDS and CTAB. It is proposed that the morphology control of the Na2SO4 nanowires is established by the cooperative effects of the Sn and NO3�{, while CTAB serves as the template and leads to homogeneous nanowires with a smooth surface. The sodium sulfate nanowires can be treated as soft templates for nanotubes, since they are electrolytes with high water solubility and can be readily removed the Na2SO4 core for the formation of nanotubes. This process is therefore greatly better than other reported methodologies, which use violent chemical agents to remove the templates, particularly important for biological applications. We have demonstrated the preparation of biocompatible polyelectrolyte (PE) nanotubes through a Layer-by-Layer (LbL) method on the Na2SO4 nanowires and the formation of Au nanotubes by self-assembly of Au nanoparticles. In both nanotube synthesis processes, PEI (polyethylenimine), PAA (polyacrylic acid) and Au nanoparticles served as the building blocks on the 1-D template, followed by simply rinsing with water to remove the core templates. This simple yet bio-friendly nanotube synthesis concept is anticipated to bring about versatile and flexible downstream applications based on its unique water-soluble property.
參考文獻
1. 馬遠榮,”奈米科技”,商周出版社,2002年,台北。
2. 陳貴賢,”奈米科技與生活”,科學發展月刊,398期,46-51,2006年2月。
3. M. S. Yeh, Y. S. Yang, Y. P. Lee, H. F. Lee, Y. H. Yeh, C. S. Yeh, J. Phys. Chem. B, 1999, 103, 6851-6857.
4. T. Y. Chen, S. F. Chen, H. S. Sheu, C. S. Yeh, J. Phys. Chem. B, 2002, 106, 9717-9722.
5. C. C. Huang, C. J. Ho, C. S. Yeh, J. Phys. Chem. B, 2004, 108, 4940-4945.
6. M. P. Pileni, Langmuir, 1997, 13, 3266-3276.
7. A. Filankembo, S. Giorgio, I. Lisiecki, M. P. Pileni, J. Phys. Chem. B, 2003, 107, 7492-7500.
8. R. Sui, A. S. Rizkalla, P. A. Charpentier, Langmuir, 2005, 21, 6150-6153.
9. L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, P. Yang, Angew. Chem. Int. Ed., 2003, 42, 3031-3034.
10. H. G. Yang, H. C. Zeng, Angew. Chem. Int. Ed., 2004, 43, 5930-5933.
11. M. Li, H. Schnablegger, S. Mann, nature, 1999, 402, 393-395.
12. L. Qi, H. Cölfen, M. Antonietti, M. Li, J. D. Hopwood, A. J. Ashely, S. Mann, Chem. Eur. J., 2001, 7, 3526-3532.
13. Y. Oaki, H. Imai, Langmuir, 2005, 21, 863-869.
14. F. Y. Cheng, C. H. Su, Y. S. Yang, C. S. Yeh, C. Y. Tsai, C. L. Wu, M. T. Wu, D. B. Shieh, Biomaterials, 2005, 26, 729-738.
15. J. Gao, C. M. Bender, C. J. Murphy, Langmuir, 2003, 19, 9065-9070.
16. S. M. Lee, S. N. Cho, J. Cheon, Adv. Mater., 2003, 15, 441-444.
17. N. Zhao, L. Qi, Adv. Mater., 2006, 18, 359-362.
18. Y. Sun, B. T. Mayers, Y. Xia, Nano. Lett., 2002, 2, 481-485.
19. Y. Yin, R. M. Rioux, C. K. Erdonmez, S. Hughes, G. A. Somorjai, A. P. Alivisatos, Science, 2004, 304, 711-714.
20. M. T. Hsiao, S. F. Chen, D. B. Shieh, C. S. Yeh, J. Phys. Chem. B, 2006, 110, 205-210.
21. C. C. Huang, J. R. Hwu, W. C. Su, D. B. Shieh, Y. H. Tzeng, C. S. Yeh, Chem. Eur. J., 2006, 12, 3805-3810.
22. H. Song, F. Kim, S. Connor, G. A. Somorjai, P. Yang, J. Phys. Chem. B, 2005, 109, 188-193.
23. B. R. Jana, L. Gearheart, C. J. Murphy, Adv. Mater., 2001, 13, 1389-1393.
24. C. J. Orendorff, C. J. Murphy, J. Phys. Chem. B, 2006, 110, 3990-3994.
25. S. Iijima, Nature, 1991, 354, 56.
26. D. T. Mitchell, S. B.Lee, L. Trofin, N. Li, T. K. Nevanen, H. Söderlund, C. R. Martin, J. Am. Chem. Soc. 2002, 124, 11864-11865.
27. C. C. Chen, Y. C. Liu, C. H. Wu, C. C. Yeh, M. T. Su, Y. C. Wu, Adv. Mater., 2005, 17, 404-407.
28. C. R. Martin, Science, 266, 1961-1966.
29. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater., 2003, 15, 353-389.
30. Z. Liang, A. S. Susha, A. Yu, F. Caruso, Adv. Mater., 2003, 15, 1849-1853.
31. S. Ai, G. Lu, Q. He, J. Li, J. Am. Chem. Soc. 2003, 125,1140-1141.
32. M. Lahav, T. Sehayek, A. Vaskevich, I. Rubinstein, Angew. Chem. Int. Ed., 2003, 42, 5575-5579.
33. T. Sehayek, M. Lahav, R. Popovitz-Biro, A. Vaskevich, I. Rubinstein, Chem. Mater., 2005, 17, 3743-3748.
34. K. S. Mayya, D. I. Gittins, A. M. Dibaj, F. Caruso, Nano. Lett., 2001, 1, 727-730.
35. S. O. Obare, N. R. Jana, C. J. Murphy, Nano. Lett., 2001, 1, 601-603.
36. Z. Sun, H. Yuan, Z. Liu, B. Han, X. Zhang, Adv. Mater., 2005, 17, 2993-2997.
37. J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H. J. Choi, P. D. Yang, Nature, 2003, 422, 599-602.
38. G. Decher, Science, 1997, 29, 1232-1237.
39. E. Donath, G. B. Sukhorukov, F. Caruso, S. A. Davis, H. Möhwald, Angew. Chem. Int. Ed, 1998, 37, 2201-2205.
40. H. Li, C. P.Tripp, Langmuir, 2002, 18, 9441-9446.
41. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science, 2001, 292, 1897-1899.
42. D. G. ShchuKin, G. B. Sukhorukov, H. Möhwald, Angew. Chem. Int. Ed, 2003, 42, 4472-4475.
43. J. Fink, C. J. Kiely, D. Bethell, D. J. Schiffrin, Chem. Mater., 1998, 10, 922-926.
44. Y. Wang, A. Yu, F. Caruso, Angew. Chem. Int. Ed, 2005, 44, 2888-2892.
45. Y. Wang, F. Caruso, Chem. Mater., 2005, 17, 953-961.
46. K. Müller, J. F. Quinn, A. P. R. Johnston, M. Becker, A. Greiner, F. Caruso, Chem. Mater., 2006, 18, 2397-2403.
47. E. Funete, A. Blanco, C. Negro, M. A. Pelach, P. Mutje, J. Tijero, Ind. Eng. Chem. Res., 2005,
44, 5616-5621.