簡易檢索 / 詳目顯示

研究生: 吳重霖
Wu, Chung-Lin
論文名稱: 連續箍筋柱之T頭鋼筋錨定行為
A Study of the T-head in Anchoring Cyclically Loaded Spiral Columns
指導教授: 侯琮欽
Hou, Tsung-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 151
中文關鍵詞: T頭機械式錨定連續箍筋反覆載重梁柱接頭韌性
外文關鍵詞: mechanical anchorage, spirals, cyclic loading, joints, ductility
相關次數: 點閱:140下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究為探討不同箍筋形式下,T頭機械式錨定於鋼筋混凝土梁柱接頭之錨定行為及破壞模式,依據ACI 318-14 [6]及ACI 352R-02 [5]規範設計三座卜字梁柱接頭試體進行反覆載重試驗。試體採用SD420W鋼筋與28Mpa之常重混凝土,箍筋分別採用傳統剪力箍筋與連續矩形箍筋,標準彎鉤與T頭機械式錨定之設計伸展長度分別為18.18 db及15.91 db。試驗於台南國家地震中心之雙軸向動態試驗系統(bi-axial testing system, BATS)進行,試驗載重設計以0.1Agfc’ (440kN)軸向力下進行最大達10%層間變位角之側位移,以模擬鋼筋混凝土韌性構架於地震力作用下之行為,並探討不同錨定形式對鋼筋混凝土構件之耐震性能影響。
      試驗結果顯示,標準彎鉤錨定與T頭機械式錨定於錨定性能上相當,三座試體於柱體皆能於預測塑鉸區產生撓曲裂縫並發展成塑鉸,此外,比較不同試體之位移韌性比能發現,使用T頭機械式錨定對梁柱接頭之韌性性能有顯著的提升,相較於標準彎鉤錨定試驗之總能量消散亦高出20%。據此,能說明T頭機械式錨定之錨定效果與標準彎鉤錨定相當,甚至更佳,於反覆載重下T頭機械式錨定試體亦表現出更佳之韌性行為,並且於工程實務上有更佳的施工性,於經濟上亦更具有經濟效益。

    The used of hook anchorage often cause steel congestion in member joints of the building. From previous study of beam-column joints, mechanical anchorages provide a promising solution for steel congestion in joints. Results of an experimental program on the cyclic response of footing joints using diffident types of transverse reinforcement specifically conventional stirrups and continuous spiral are presented, in order to evaluate the used of mechanical anchorages. Three footing joints specimens were tested under cyclic loading with consistent gravity load equal to 440 kN(0.1Agf’c), to simulate the gravity loads and earthquake loads. Key variables included different anchorage methods and transverse reinforcement configuration. The presented experimental program shows that specimens exhibited side-face concrete blowout, back concrete pushout, or a combination of two failure modes. All specimens underwent plastic hinging while no bar slip was observed, which demonstrate that the design of developed length based on ACI 318-14 and ACI 352R-02 provide an appropriate estimate of anchorage strength. Specimen with mechanical anchorage performed better ductility and energy dissipation. A comparison of the strain at the anchorages shows that mechanical anchorages can exhibit adequate anchorage capability and satisfactory performance while behaving different tensile force transference.

    摘要 I 誌謝 XIII 目錄 XIV 表目錄 XVIII 圖目錄 XIX 第一章 緒論 1 1.1 前言 1 1.2 研究動機 3 1.3 研究目的 4 第二章 文獻回顧 5 2.1 圍束效應 5 2.1.1 傳統箍筋圍束效應之相關研究 5 2.1.2 連續箍筋圍束效應之相關研究 7 2.2 機械式錨定 9 2.3 非機械式錨定相關設計規範 12 2.3.1 直通鋼筋之延伸長度 12 2.3.2 標準彎鉤鋼筋之伸展長度 16 2.4 機械式錨定相關設計規範 21 2.4.1 ACI 318-14 設計規範 22 2.4.2 ACI 352R-02 設計規範 23 2.5 機械式錨定研究文獻回顧 25 2.5.1 Ghimire預埋錨定之拉拔試驗 25 2.5.2 Bashandy梁柱接頭拉拔試驗 26 2.5.3 紀凱甯錨定拉拔試驗 27 2.5.4 李宏仁反覆載重試驗 29 第三章 試驗規劃 31 3.1 試體設計 31 3.1.1 構件斷面設計 33 3.1.2 伸展長度設計 36 3.2 試體製作 41 3.3 材料試驗 48 3.4 試驗計劃 50 3.4.1 載重加載 53 3.4.2 試驗佈置 55 3.4.3 試驗量測 58 第四章 試驗結果與討論 62 4.1 裂縫發展與破壞模式 62 4.1.1 CS-SH 64 4.1.2 SS-SH 68 4.1.3 SS-TM 72 4.2 側向力-位移關係 77 4.2.1 遲滯迴圈 77 4.2.2 勁度 81 4.2.3 包絡線 82 4.3 韌性與消能行為 84 4.4 應變計數據分析 89 4.4.1 箍筋應變計量測 89 4.4.2 錨定強度量測 91 第五章 結論與建議 94 5.1 結論 94 5.2 建議 96 參考文獻 97 附錄A 99 附錄B 139

    [1] Ahmad, S., & Shah, S. P. (1982). Stress-strain curves of concrete confined by spiral reinforcement. ACI Structural Journal, 79(6), 484-490.
    [2] Assa, B., Nishiyama, M., & Watanabe, F. (2001). New approach for modeling confined concrete. I: Circular columns. Journal of Structural Engineering, 127(7), 743-750.
    [3] Barahona, M. D. (2019). Ductility of continuously confined columns under high-axial loading. 國立成功大學土木工程所碩士論文, 台南.
    [4] Bashandy, T. R. (1998). Application of headed bars in concrete members.
    [5] Bonacci, J. F., & Alcocer, S. M. Recommendations for Design of Beam-Column Connections in Monolithic Reinforced Concrete Structures. ACI 352R-02.
    [6] Building Code Requirements for Structural Concrete (ACI 318-14). American Concrete Institute.
    [7] Considère, A. (1906). Experimental researches on reinforced concrete: McGraw Publishing Company.
    [8] Ghimire, K. P., Shao, Y., Darwin, D., & O'Reilly, M. (2019). Conventional and High-Strength Headed Bars—Part 1: Anchorage Tests.
    [9] Institute, A. C. (2005). Acceptance criteria for moment frames based on structural testing and commentary (ACI 374.1-05).
    [10] Kent, D. C., & Park, R. (1971). Flexural members with confined concrete. Journal of the Structural Division.
    [11] Lee, H.-J., & Yu, S.-Y. (2009). Cyclic Response of Exterior Beam-Column Joints with Different Anchorage Methods. ACI Structural Journal.
    [12] Mander, J., Priestley, M., & Park, R. (1988). Observed stress-strain behavior of confined concrete. Journal of Structural Engineering, 114(8), 1827-1849.
    [13] Mander, J. B., Priestley, M. J., & Park, R. (1988). Theoretical stress-strain model for confined concrete. Journal of Structural Engineering, 114(8), 1804-1826.
    [14] Muguruma, H. (1980). A stress-strain model of confined concrete. Annual Report on Cement Engineering, 34, 429-432.
    [15] Thompson, M. K., Jirsa, J. O., Breen, J. E., & Klingner, R. E. (2002). Anchorage Behavior of Headed Reinforcement: Literature Review.
    [16] 中國土木水利工程學會(2007),「建築物耐震設計規範及解說」, 臺北。

    [17] 內政部營建署(2005),「混凝土結構設計規範」, 臺北。

    [18] 紀盈綺. (2012). 鋼筋混凝土梁柱接頭耐震試驗資料庫建構與參數分析. 國立雲林科技大學營建工程系碩士班碩士論文, 雲林縣.
    [19] 紀凱甯. (2010). 高強度混凝土之T頭鋼筋錨定行為研究. 淡江大學土木工程學系碩士班碩士論文, 新北市.
    [20] 國家地震工程研究中心,https://www.ncree.narl.org.tw/

    無法下載圖示 校內:立即公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE