簡易檢索 / 詳目顯示

研究生: 張志偉
Chang, Chih-Wei
論文名稱: 利用保留髓腔方式進行全人工膝關節置換-新式微創手術與器材之研發
Medullae-preserved Total Knee Arthroplasty- The Development of New Minimally Invasive Surgical Techniques and Related Devices
指導教授: 張志涵
Chang, Chih-Han
學位類別: 博士
Doctor
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 70
中文關鍵詞: 全人工膝關節置換微創髓腔保留失血手術準確度
外文關鍵詞: total knee arthroplasty, minimally invasive, preservation of medullae, blood loss, surgical accuracy
相關次數: 點閱:90下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 研究背景: 全人工膝關節置換手術(Total Knee Arthroplasty, TKA)數目隨老年人口增長急遽增加。但病患常對手術相關風險與併發症存有疑慮;以安全、有效且侵入性小的微創手術(Minimally Invasive Surgery, MIS)進行,遂成其主要訴求。過去研究針對微創手術方式,著重的是減少軟組織的破壞;但對於術中保留骨髓腔的完整性並未多做著墨;且現有多數膝關節置換手術仍採取侵入髓腔的髓腔內導引方式(Intramedullary, IM)來完成多數骨頭的裁切。

    研究目的: 本研究主要目的為探究以保留髓腔方式,也就是以髓外導引方式(Extramedullary, EM)來進行微創膝關節置換,相對於髓腔內導引方式手術所產生的臨床差異;在驗證此方法的臨床優勢後,將依常用手術原理、目標來設計便於術中使用的裁切工具,並藉由臨床成果來證實該工具的安全及有效性。

    研究方法:本研究一共包含了兩項臨床驗證;首先是以回溯式蒐集2013三月-2014六月由同一術者分別以傳統IM與不依賴IM導引的徒手持鋸方式經EM來執行單側首次TKA的125位病患,於住院期間各項臨床數據(特別是失血相關與早期術後功能回復等)來進行比較; 其次,應用所發展出的新式EM輔助切割器具來執行TKA手術,以前瞻式方式蒐集在2017年五月至十一月間以此新式器械輔助下所執行TKA病患,量測其在術後三個月x光影像追蹤的下肢排列角度與植入物位置,與同時期用傳統IM方式進行TKA的結果,來比較兩種不同方式的手術精確度;另外也對兩組病患的早期術後相關數據進行比較,以確認保留髓腔在減少TKA失血的優勢。

    結果: 在第一項研究中,採徒手持鋸EM方式進行TKA的65位病人住院期間失血相關指標,無論是平均血紅素的降低(Hb loss)、估算失血量(Calculated Blood Loss)與凝血相關的D-dimer術後上升程度(D-dimer elevation),都明顯比傳統IM導引方式進行60例TKA來的少(分別為1.92 vs.2.35g/dL; 618 vs. 756ml及813 vs. 1343 ng/dL; p < 0.05) --顯示術中保留髓腔在減少手術失血的臨床優勢! 接著在第二項研究中,以新式EM輔助切割工具進行的37例TKA與傳統IM方式進行的29例TKA相較,兩組術後影像量測下肢排列與植入物位置的結果相仿(平均機械軸角度2.74 vs. 2.76; 平均縱切面股骨組件角度5.27 vs.3.83; 平均縱切面脛骨組件角度89.9 vs.89.6; p > 0.05),且兩組未達手術目標(誤差3度內)的病患(outlier)比例相似(9/29 vs. 11/37),種種代表兩種手術方式的準確度相似;以EM輔助切割工具進行手術,其術後平均失血量(Hb loss)與D-dimer上升程度仍較傳統IM方式來的少(分別為1.9 vs.2.3 g/dL; 681 vs. 1246 ng/dL; p < 0.05)。 此外,兩項研究中,以髓腔外或髓腔內導引方式進行的手術時間相仿,無明顯統計差異。

    結論: 以保留髓腔方式進行全膝人工關節置換,更進一步符合微創精神;不論是由徒手持鋸或依新式EM輔助切割工具進行,相較於傳統髓腔內導引方式都可以有效減少手術失血與凝血相關風險,對於臨床上特定病患有其顯著效益!

    Most total knee arthroplasties (TKA) are executed using intramedullary (IM) instruments with certain risks and complications, though which is a cost-effective surgical intervention for the end stage of arthritic knees. To investigate the value of medullae preservation in the minimally invasive TKA, two different surgical approaches, intramedullary and extramedullary (EM) referencing, were compared. First a retrospective clinical review enrolling 125 subjects was conducted to compare the early clinical results of each group (IM vs. EM), and which verified the favorable bleeding profiles obtained in the EM group, including fewer hemoglobin reduction after surgery (1.92 vs. 2.35 g/ dL; p = 0.022) and less elevation of the product of clots (813.5 vs. 1342.6 ng/ dL; p = 0.015). After the development of an according EM cutting device, a prospective clinical study enrolling 66 subjects was performed to verify its clinical effectiveness using postoperative radiographic measurements. Similar corrected limb alignment (2.740 vs. 2.760 in mechanical alignments), components positions and even the proportion of radiographic outliers (29.7% vs. 31.0%) to the current IM-TKAs confirmed the surgical accuracy of the new EM devices while preserving the hemostatic benefits (p <0.05). Based on the fewer blood loss as well as the less clot production obtained in the EM-TKA in both studies, the surgical insult can be further minimized in current MIS-TKA through the preservation of bony medullae. The patients with bleeding tendency or intolerable to blood loss will be benefited with these EM techs and devices while undergoing primary TKAs.

    摘要 II 誌謝 VIII CONTENTS IX LIST OF FIGURES XII LIST OF TABLES XIII Chapter 1 INTRODUCTION 1 1.1 Research Background 1 1.2 Development of Knee Prostheses and Indications 2 1.3 Indications for Knee Arthroplasty and Alternative Treatments 7 1.4 Periop Complications and Long-term Outcomes after Knee Arthroplasty……………………..8 1.4.1 Perioperative Complications 8 1.4.2 Long-term Outcomes after TKA 10 1.5 Surgical Principles and Current Instruments 10 1.5.1 Surgical Principles 10 1.5.2 Conventional Guides and Related Issues 12 1.5.3 Updated Instruments for Primary TKAs 13 1.6 Statement of Problems and Rationales 16 1.7 Motivation and Objectives 19 1.7.1 Study 1: Can Extramedullary Preparation Reduce Surgical Invasiveness after TKA… 20 1.7.2 Study 2: Development of New EM Guides in TKA and Clinical Application 21 Chapter 2 MEDULLAE PRESERVATION TO REDUCE SURGICAL TRAUMA OF TOTAL KNEE ARTHROPLASTY 22 2.1 Literature Review and Expected Outcomes 22 2.2 Patients Selection 22 2.3 Surgical Methods and Implants 23 2.4 Assessment Methods 25 2.4.1 Bleeding Related Parameters 25 2.4.2 Other Perioperative Outcomes 26 2.5 Statistical Analysis 26 2.6 Results 26 Chapter 3 DEVELOPMENT OF NEW SURGICAL GUIDES 30 3.1 Design Features 30 3.2 Prototype and Finished Product 32 3.3 Suggested Surgical Procedures 36 Chapter 4 APPLICATION OF NEW JIGS IN PRIMARY TKA 40 4.1 Background and Objectives 40 4.2 Patients Selection 41 4.3 Surgical Methods: IM versus EM Referencing 41 4.4 Assessments 44 4.5 Statistical Analysis 46 4.6 Results 46 Chapter 5 DISCUSSION 50 5.1 Blood Loss - the Optimal Representative for Surgical Assault?.......................................50 5.2 Prolonged Surgical Duration- the Destiny of EM-TKA?...................................................52 5.3 Clinical Benefits beside Hemostatic Advantage of Medullae Preservation 53 5.4 Application of New EM Devices and associated Economic Impacts................................55 5.5 Limitations and Strengths...............................................................................................57 5.6 Future Directions and Works........................................................................................57 Chapter 6 CONCLUSION 59 REFERENCES 60 APPENDIX………………………………………………………………………… …….70

    1. Suzanne G. Leveile. Musculoskeletal Aging. Curr Opin in Rheumatol 2004, 16: 114-8.
    2. Murphy L, Helmick CG. The impact of osteoarthritis in the United States: a population-health perspective: A population-based review of the fourth most common cause of hospitalization in U.S. adults. Orthop Nurs. 2012; 31(2):85-91.
    3. Losina E, Walensky RP, Kessler CL, et al. Cost-effectiveness of total knee arthroplasty in the United States: patient risk and hospital volume. Arch Intern Med. 2009 Jun 22; 169(12):1113-21.
    4. Ballantyne PJ, Gignac MA, Hawker GA. A patient-centered perspective on surgery avoidance for hip or knee arthritis: lessons for the future. Arthritis Rheum. 2007 Feb 15; 57 (1):27-34.
    5. Gunston FH. Polycentric knee arthroplasty. Prosthetic simulation of normal knee movement. J Bone Joint Surg Br. 1971 May; 53(2):272-7.
    6. Freeman MA, Swanson SA, Todd RC. Total replacement of the knee using the Freeman-Swanson knee prosthesis. Clin Orthop Relat Res. 1973; 94:153-70.
    7. Insall J, Ranawat CS, Scott WN, Walker P. Total condylar knee replacment: preliminary report. Clin Orthop Relat Res. 1976 Oct;(120):149-54.
    8. Insall J, Scott WN, Ranawat CS. The total condylar knee prosthesis. A report of two hundred and twenty cases. J Bone Joint Surg Am. 1979 Mar; 61(2):173-80.
    9. Tew M, Waugh W. Estimating the survival time of knee replacement. J Bone Joint Surg Br. 1982; 64(5):579-82.
    10. Moreland JR1.Mechanisms of failure in total knee arthroplasty. Clin Orthop Relat Res. 1988 Jan; (226):49-64.
    11. Bartel DL, Burstein AH, Santavicca EA, Insall JN. Performance of the tibial component in total knee replacement. J Bone Joint Surg Am. 1982 Sep; 64(7):1026-33.
    12. Reilly D, Walker PS, Ben-Dov M, Ewald FC. Effects of tibial components on load transfer in the upper tibia. Clin Orthop Relat Res. 1982 May; (165):273-82.
    13. Repicci JA, Eberle RW. Minimally invasive surgical technique for unicondylar knee arthroplasty. J South Orthop Assoc.1999; 8(1): 20-7; discussion 27.
    14. Tria AJ, Coon TM. Minimal incision total knee arthroplasty: early experience. Clin Orthop Relat Res 2003;185-190.
    15. Gill GS, Joshi AB. Long-term results of cemented, posterior cruciate ligament-retaining total knee arthroplasty in osteoarthritis. Am J Knee Surg.2001 ;14(4): 209-14.
    16. Rodriguez JA, Bhende H, Ranawat CS. Total condylar knee replacement: a 20-year followup study. Clin Orthop Relat Res.2001; (388):10-7.
    17. Furnes O, Espehaug B, Lie SA, et al. Early failures among 7,174 primary total knee replacements: a follow-up study from the Norwegian Arthroplasty Register 1994-2000.ActaOrthop Scand. 2002; 73(2):117-29.
    18. Harrysson OL, Robertsson O, Nayfeh JF. Higher cumulative revision rate of knee arthroplasties in younger patients with osteoarthritis. Clin Orthop Relat Res. 2004; (421):162-8.
    19. Koskinen E, Eskelinen A, Paavolainen P, et al. Comparison of survival and cost-effectiveness between unicondylar arthroplasty and total knee arthroplasty in patients with primary osteoarthritis: a follow-up study of 50,493 knee replacements from the Finnish Arthroplasty Register. Acta Orthop. 2008 Aug; 79(4):499-507.
    20. Kane RL, Saleh KJ, Wilt TJ, Bershadsky B. The functional outcomes of total knee arthroplasty. J Bone Joint Surg Am.2005;87(8):1719-24.
    21. Curran JW, Lawrence DN, Jaffe H, Kaplan JE, Zyla LD, Chamberland M, Weinstein R, Lui KJ, Schonberger LB, Spira TJ. Acquired immunodeficiency syndrome (AIDS) associated with transfusions. N Engl J Med. 1984; 310: 69-75.
    22. Kourtzis N, Pafilas D, Kasimatis G. Blood saving protocol in elective total knee arthroplasty. Am J Surg. 2004;187: 261-7.
    23. Couvret C, Laffon M, Baud A, Payen V, Burdin P, Fusciardi J. A restrictive use of both autologous donation and recombinant human erythropoietin is an efficient policy for primary total hip or knee arthroplasty. Anesth Analg. 2004; 99: 262-71
    24. Marmor L, Avoy DR, McCabe A. Effect of fibrinogen concentrates on blood loss in total knee arthroplasty. Clin Orthop Relat Res. 1991 Dec; (273):136-8.
    25. Yamada K, Imaizumi T, Uemura M, Takada N, Kim Y. Comparison between 1-hour and 24-hour drain clamping using diluted epinephrine solution after total knee arthroplasty. J Arthroplasty. 2001;16: 458-62.
    26. Juelsgaard P, Larsen UT, Sørensen JV, et al. Hypotensive epidural anesthesia in total knee replacement without tourniquet: reduced blood loss and transfusion. Reg Anesth Pain Med. 2001 Mar-Apr; 26(2):105-10.
    27. Markovic-Denic L, Zivkovic K, Lesic A, et al. Risk factors and distribution of symptomatic venous thromboembolism in total hip and knee replacements: prospective study. Int Orthop. 2012 Jun; 36(6):1299-305.
    28. Schrama JC, Espehaug B, Hallan G, et al. Risk of revision for infection in primary total hip and knee arthroplasty in patients with rheumatoid arthritis compared with osteoarthritis: a prospective, population-based study on 108,786 hip and knee joint arthroplasties from the Norwegian Arthroplasty Register. Arthritis Care Res (Hoboken). Apr 2010; 62(4):473-9.
    29. Dalury DF, Pomeroy DL, Gorab RS, Adams MJ. Why are total knee arthroplasties being revised? J Arthroplasty. 2013 Sep; 28(8 Suppl):120-1.
    30. Keeney JA, Eunice S, Pashos G, et al. What is the evidence for total knee arthroplasty in young patients? a systematic review of the literature. Clin Orthop Relat Res. 2011 Feb; 469(2):574-83.
    31. Dennis DA, Channer M, Susman MH, et al. Intramedullary Versus Extramedullary Tibial Alignment Systems in Total Knee Arthroplasty. J Arthroplasty. 1993 Feb; 8(1): 43-7.
    32. Aglietti P, Buzzi R, De Felice R, Giron F. The Insall-Burstein total knee replacement in osteoarthritis: a 10-year minimum follow-up. J Arthroplasty. 1999; 14: 560–5.
    33. Nun˜o-Siebrecht N, Tanzer M, Bobyn JD. Potential errors in axial alignment using intramedullary instrumentation for total knee arthroplasty. J Arthroplasty. 2000; 15: 228–30.
    34. Ma B, Long W, Rudan JF, Ellis RE. Three-dimensional analysis of alignment error in using femoral intramedullary guides in unicompartmental knee arthroplasty. J Arthroplasty. 2006; 21: 271–278.
    35. Caillouette JT, Anzel SH. Fat embolism syndrome following the intramedullary alignment guide in total knee arthroplasty. Clin Orthop Relat Res. 1990; 251:198–9.
    36. Dorr LD, Merkel C, Mellman MF, Klein I. Fat emboli in bilateral total knee arthroplasty. Clin Orthop Relat Res. 1989; 248:112– 9.
    37. Monto RR, Garcia J, Callaghan JJ. Fatal fat embolism following total condylar knee arthroplasty. J Arthroplasty. 1990; 5: 291–9.
    38. Stern SH, Sharrock N, Kahn R, lnsall JN. Hematologic and circulatory changes associated with total knee arthroplasty surgical instrumentation. Clin Orthop Relat Res. 1994; 299:179–189.
    39. Kim YH. Incidence of fat embolism syndrome after cemented or cementless bilateral simultaneous and unilateral total knee arthroplasty. J Arthroplasty. 2001;16: 730–9.
    40. Kim YH, Park JW, Kim JS. Computer-navigated versus conventional total knee arthroplasty a prospective randomized trial. J Bone Joint Surg Am. 2012; 94(22): 2017-24.
    41. Chauhan SK, Scott RG, Breidahl W, et al. Computer-assisted knee arthroplasty versus a conventional jig-based technique. A randomized, prospective trial. J Bone Joint Surg Br 2004; 86: 372–7.
    42. Kalairajah Y, Simpson D, Cossey AJ, et al. Blood loss after total knee replacement: effects of computer- assisted surgery. J Bone Joint Surg Br 2005; 87: 1480–2.
    43. Victor J, Dujardin J, Vandenneucker H, Arnout N, et al. Patient-specific guides do not improve accuracy in total knee arthroplasty: a prospective randomized controlled trial. Clin Orthop Relat Res. 2013 Apr 25.
    44. Huichao Fu, Jiaxing Wang, Shenyuan Zhou. No difference in mechanical alignment and femoral component placement between patient-specific instrumentation and conventional instrumentation in TKA. Knee Surg Sports Traumatol Arthrosc 2014 Jun 11.
    45. Baldini A, Adravanti P. Less invasive TKA: Extramedullary femoral reference without navigation. Clin Orthop Relat Res 2008; 466: 2694-700.
    46. Seo JG, Moon YW, Kim YS. A comparison of extramedullary and intramedullary femoral component alignment guide systems in TKA. J Korean Knee Soc 2006;18: 47-54.
    47. Ku MC, Chen WJ, Lo CS, Chuang CH, Ho ZP, Kumar A. Femoral Component Alignment with a New Extramedullary Femoral Cutting Guide Technique. Indian J Orthop. 2019 Mar-Apr; 53(2): 276–281.
    48. Tria AJ Jr. Advancements in minimally invasive total knee arthroplasty. Orthopedics. 2003 Aug; 26(8 Suppl):s859-63.
    49. Cheng T, Feng JG, Liu T, Zhang XL. Minimally invasive total hip arthroplasty: a systematic review. Int Orthop. Dec 2009; 33(6):1473-81.
    50. Kandel L, Vasili C, KirshG. Extramedullary femoral alignment instrumentation reduces blood loss after uncemented total knee arthroplasty. J Knee Surg. 2006 Oct; 19(4):256-8.
    51. Martin A, Wohlgenannt O, Prenn M, et al. Imageless navigation for TKA increases implantation accuracy. Clin Orthop Relat Res2007;460: 178–84.
    52. Victor J, Hoste D. Image-based computer-assisted total knee arthroplasty leads to lower variability in coronal alignment. Clin Orthop Relat Res 2004; 428:131–9.
    53. 賴國安,<徒手微創全膝人工關節>,<<微創膝關節重建手術>>,(新北市: 金名圖書有限公司,2015年),頁27-54。
    54. Chang CW, Wu PT, Yang CY. Blood loss after minimally invasive total knee arthroplasty: effects of imageless navigation. Kaohsiung J Med Sci. 2010 May; 26(5):237-43.
    55. Chang CW, Chang CH, Yang CY, Lai KA, et al. Kinematic analysis of leg alignment during conventional versus navigated total knee arthroplasty: initial results of a prospective study. Kaohsiung J Med Sci. 2012 Sep; 28(9):484-9.
    56. Chang CW, Lan SM, Tai TW, Lai KA, et al. An effective method to reduce ischemia time during total knee arthroplasty. J Formos Med Assoc. 2012 Jan; 111(1): 19-23.
    57. Tai TW, Chang CW, Lai KA, et al. Effects of tourniquet use on blood loss and soft-tissue damage in total knee arthroplasty: a randomized controlled trial. J Bone Joint Surg Am. 2012 Dec 19; 94(24): 2209-15.
    58. Gross JB. Estimating allowable blood loss: corrected for dilution. Anesthesiology1983; 58: 277–80.
    59. Nadler SB, Hidalgo JH, Bloch T. Prediction of blood volume in normal human adults. Surgery. 1962 Feb;51(2):224-32.
    60. Brooks P. Seven cuts to the perfect total knee Orthopedics. 2009 Sep; 32(9).
    61. Jeon SH, Kim JH, Lee JM, Seo ES. Efficacy of extramedullary femoral component alignment guide system for blood saving after total knee arthroplasty. Knee Surg Relat Res. 2012; 24(2):99-103.
    62. Heyse TJ, Haas SB, Drinkwater D, Lyman S, Kim HJ, Kahn BA, Figgie MP. Intraarticular fibrinogen does not reduce blood loss in TKA: a randomized clinical trial. Clin Orthop Relat Res. 2014; 472(1): 272-6.
    63. Pierson JL, Hannon TJ, Earles DR. A blood-conservation algorithm to reduce blood transfusions after total hip and knee arthroplasty. J Bone Joint Surg Am.2004; 86(7):1512-8.
    64. Diamond PT, Conaway MR, Mody SH, Bhirangi K. Influence of hemoglobin levels on inpatient rehabilitation outcomes after total knee arthroplasty. J Arthroplasty 2006; 21(5): 636-41.
    65. Chareancholvanich K, Siriwattanasakul P, Narkbunnam R, Pornrattanamaneewong C. Temporary clamping of drain combined with tranexamic acid reduce blood loss after total knee arthroplasty: a prospective randomized controlled trial. BMC Musculoskelet Disord 2012; 13: 124.
    66. Hart A, Khalil JA, Carli A, et al. Blood transfusion in primary total hip and knee arthroplasty. Incidence, risk factors, and thirty-day complication rates. J Bone Joint Surg Am 2014; 96: 1945-51.
    67. Bernard AC, Davenport DL,Chang PK, Vaughan TB, Zwischenberger JB. Intraoperative transfusion of 1 U to 2 U packed red blood cells is associated with increased 30-day mortality, surgical-site infection, pneumonia, and sepsis in general surgery patients. J Am Coll Surg.2009; 208(5):931-7
    68. Fernandez MC, Gottlieb M, Menitove JE. Blood transfusion and postoperative infection in orthopedic patients. Transfusion 1992; 32(4): 318-22.
    69. Tillett ED, Engh GA, Petersen T. A comparative study of extramedullary and intramedullary alignment systems in total knee arthroplasty. Clin Orthop and related research. 1988 May(230):176-81.
    70. Engh GA, Petersen TL. Comparative experience with intramedullary and extramedullary alignment in total knee arthroplasty. J Oarthrop. 1990 Mar;5(1):1-8.
    71. Luring C, Bathis H, Tingart M, Perlick L, Grifka J. Computer assistance in total knee replacement - a critical assessment of current health care technology. Comput Aided Surg. 2006 Mar;11(2):77-80.
    72. Leon VJ, Lengua MA, Calvo V, Lison AJ. Use of patient-specific cutting blocks reduces blood loss after total knee arthroplasty. Eur J Orthop Surg & traumatol : orthopedie traumatologie. 2017 Feb;27(2):273-7.
    73. Prasad N, Padmanabhan V, Mullaji A. Blood loss in total knee arthroplasty: an analysis of risk factors. International orthopaedics. 2007 Feb;31(1): 39-44.
    74. Smith TO, Hing CB. Is a tourniquet beneficial in total knee replacement surgery? A meta-analysis and systematic review. The Knee. 2010 Mar;17(2): 141-7.
    75. Young SW, et al. Does speed matter? Revision rates and functional outcomes in TKA in relation to duration of surgery. Presented at: Knee Society Specialty Day; March 28, 2015; Las Vegas.
    76. Pedersen AB, Mehnert F, Overgaard S, Johnsen SP. Allogeneic blood transfusion and prognosis following total hip replacement: a population-based follow up study. BMC musculoskeletal disord. 2009 Dec 29;10:167.
    77. Alshryda S, Sarda P, Sukeik M, Nargol A, Blenkinsopp J, Mason JM. Tranexamic acid in total knee replacement: a systematic review and meta-analysis. J Bone Joint Surg Br 2011 Dec;93(12):1577-85.
    78. Ko PS, Tio MK, Tang YK, Tsang WL, Lam JJ. Sealing the intramedullary femoral canal with autologous bone plug in total knee arthroplasty. J of Arthroplasty. 2003 Jan;18(1):6-9.
    79. Kalairajah Y, Cossey AJ, Verrall GM, Ludbrook G, Spriggins AJ. Are systemic emboli reduced in computer-assisted knee surgery?: A prospective, randomised, clinical trial. J Bone Joint Surg Br.. 2006 ; 88(2):198-202.
    80. Thienpont E, Paternostre F, Pietsch M, Hafez M, Howell S. Total knee arthroplasty with patient-specific instruments improves function and restores limb alignment in patients with extra-articular deformity. Knee. 2013 Dec;20(6): 407-11.
    81. Yaffe M, Luo M, Goyal N, et al. Clinical, functional, and radiographic outcomes following total knee arthroplasty with patient-specific instrumentation, computer-assisted surgery, and manual instrumentation: a short-term follow-up study. Int J Comput Assist Radiol Surg. 2014 Sep;9(5): 837-44.
    82. Ljungqvist O, Scott M, Fearon KC. Enhanced recovery after surgery: a review. JAMA Surg.2017; 152(3):292-8.

    下載圖示 校內:2021-09-01公開
    校外:2023-09-01公開
    QR CODE