| 研究生: |
郭騰憶 Kuo, Teng-Yi |
|---|---|
| 論文名稱: |
物理模型研究鋼鐵盛鋼桶精煉製程參數對均混時間的影響 Effect of Process Parameters on Mixing Time in Ladle Refining Process Using Physical Model |
| 指導教授: |
郭瑞昭
Kuo, Jui-Chao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 水模 、均混時間 、數位影像比較軟體 、流場 |
| 外文關鍵詞: | water model, mixing time, DIC, flow field |
| 相關次數: | 點閱:124 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗利用水模模型模擬爐外精煉中以氬氣噴吹盛鋼桶鋼液的製程,其中製程參數包括:噴吹流量(16.5L/min與20.0L/min),噴吹位置(中心、R/4、R/3、R/2、2R/3和3R/4),噴吹深度(45cm、51cm和57cm),噴吹方向(水平向左噴吹與垂直向下噴吹),噴吹物(氣體噴吹及氣體混和聚乙烯噴吹)。分別以光學方法和測量導電度方法探討製程參數對均混時間的影響,而且本研究首次以光學方法決定均混時間。
光學方法量測均混時間是在水模桶中加入聚乙烯當作示踪劑,拍照觀察每半秒的灰階值變化,並藉由灰階值的變化來決定均混時間。結果顯示光學方法與量測導電值方法有相似性,兩者的差距為3秒到9.7秒。
在導電度量測均混時間的方法探討各個參數對均混時間的影響。結果顯示噴吹流量為16.5L/min與20.0L/min時平均均混時間為58.2秒和54.8秒,可見流量越大,均混時間越短;噴吹方向為水平噴吹與垂直噴吹時平均均混時間為53.8秒和59秒,水平噴吹會有較短的均混時間;僅噴吹氣體與氣體混和聚乙烯噴吹的平均均混時間為54.1秒和58.7秒,僅噴吹氣體會得到較快的均混時間;噴吹深度為45cm、51cm和57cm時平均均混時間為58.6秒、57.1秒和53.7秒,可見深度越深,均混時間越短;噴吹位置為中心、R/4、R/3、R/2、2R/3和3R/4時平均均混時間為57.1秒、61.8秒、59.3秒、60秒、49.6秒和51.2秒,可知當噴吹位置在2R/3的地方會有最短的均混時間。總結各製程參數對均混時間的影響如下,噴吹流量、水平噴吹、噴吹氣體、噴吹深度及2R/3噴吹位置皆有助於縮短均混時間。
In this study water model was employed to simulate the ladle refining process using argon injection. The process parameters are flow rate of 16.5 and 20.0 L/min, injection position of center-3R/4, submergence depth of 45, 51, 57cm, injection at the vertical and horizontal directions, and injection particles of gas and low density polyethylene (LDPE) with gas. Measurement of electrical conductivity and optical image method were used to measure mixing time. In this work we proposed firstly an optical image method to measure the mixing time.
In the case of optical image method LDPE particles were used to be as tracer after each 0.5 seconds digital image of the cross section were recorded. The gradient of gray scale in images is able to determine the mixing time. The results of this method are consistent with those of electrical conductivity measurement and the difference between them is about 3-9.7 seconds.
In the case of electrical conductivity measurement the results show that increasing flow rate, using the horizontal injection direction, using gas injection, increasing submergence depth and using 2R/3 injection position lead to improve the mixing process, that is, reduce the mixing time.
[1] R. Takata, J. Yang and M. Kuwabara: “Characteristics of Inclusions Generated during Al–Mg Complex Deoxidation of Molten Steel”, ISIJ Int., 47(2007), 1379.
[2] K. Choudhary and A. Ghosh: “Thermodynamic Evaluation of Formation of Oxide–Sulfide Duplex Inclusions in Steel”, ISIJ Int., 48(2008), 1552.
[3] W.Y. Kim, J.O. Jo, C.O. Lee, D.S. Kim and J.J. Pak: “Thermodynamic Relation between Aluminum and Titanium in Liquid Iron” ISIJ Int., 48(2008), 17.
[4] L. Wang, H. G. Lee and P. Hayes: “Prediction of the Optimum Bubble Size for Inclusion Removal from Molten Steel by Flotation”, ISIJ Int. ,36(1996), 7.
[5] S. Yokoya, S. Takagi, H. Souma, M. Iguchi, Y. Asako and S. Hara: ”Removal of Inclusion through Bubble Curtain Created by Swirl Motion in Submerged Entry Nozzle”, ISIJ Int., 38(1998), 1086
[6] L. Y. Wang, Q. Y. Zhang, S. H. Peng and Z. B. Li: “Mathematical Model for Growth and Removal of Inclusion in a Multi-tuyere Ladle during Gas-stirring”, ISIJ Int., 45(2005), 331.
[7] D. Apelian, R. Mutharasan and S. Ali: “Removal of Inclusions from Steel Melts by Filtration”, J. Mater. Sci., 20(1985), 3501.
[8] S. Ali, R. Mutharasan and D. Apelian: “Physical Refining of Steel Melts by Filtration”, Metall. Mater. Trans. B, 16(1985), 725.
[9] L. Zhang, B. G. Thomas, X. Wang and K. Cai: “Evaluation and Control of Steel Cleanliness - Review”, 85th Steelmaking Conference Proceedings, ISS-AIME, Warrendale, PA, 2002, P431~P452
[10] H. Arai, K. Matsumoto, S. I. Shimasaki and S. Taniguchi, “Model Experiment on Inclusion Removal by Bubble Flotation Accompanied by Particle Coagulation in Turbulent Flow”, ISIJ Int., 49(2009), 965.
[11] J. Aoki, L. Zhang and B.G. Thomas: “Modeling of inclusion removal in ladle refining.” , 3rd Int. Congr. on Science and Technology of Steelmaking, Charlotte, NC, May 9–11, 2005, Association for Iron & Steel Technology, Warrendale, PA, 319.
[12] L. T. Wang, Q. Y. Zhang, C. H. Deng and Z. B. Li: “Mathematical Model for Removal of Inclusion in Molten Steel by Injecting Gas at Ladle Shroud”, ISIJ Int., 45(2005), 1138.
[13] E. A. Chichkarev: “Modeling the Coagulation and Removal of Nonmetallic Inclusions during the Injection of an Inert Gas into a Melt”, Metallurgist, 54(2010), 236.
[14] A. Kumar, D. Mazumdar and S. C. Koria: “Modeling of Fluid Flow and Residence Time Distribution in a Four-strand Tundish for Enhancing Inclusion Removal”, ISIJ Int., 48(2008), 38.
[15] L. Zhong, B. Li, Y. Zhu, R. Wang, W. Wang and X Zhang: “Fluid Flow in A Four-strand Bloom Continuous Casting Tundish with Different Flow Modifiers”, ISIJ Int., 47(2007), 88.
[16] S. X. Liu, X. M. Yang, L. Du, L. Li and C. Z. Liu: “Hydrodynamic and Mathematical Simulations of Flow Field and Temperature Profile in an Asymmetrical T-type Single-strand Continuous Casting Tundish”, ISIJ Int., 48(2008), 1712.
[17] Y. Miki and B. Thomas: “Modeling of Inclusion Removal in a Tundish”, Metall. Mater. Trans. B, 30(1999), 639.
[18] L. Zhang, S. Taniguchi and K. Cai: “Fluid Flow and Inclusion Removal in Continuous Casting Tundish”, Metall. Mater. Trans. B, 31(2000), 253.
[19] L. Zhang and B. G. Thomas : “Inclusion Investigation during Clean Steel Production at Baosteel”, ISS Tech. 2003 (Conf. Proc.), Indianapolis, IN. USA, April. 27-30, ISS-AIME, Warrendale, PA, 2003, 141
[20] Y. A. Meng and B. G. Thomas : “Heat-Transfer and Solidification Model of Continuous Slab Casting: CON1D”, Metall. Mater. Trans. B, 34(2003), 685
[21] D. Mazumdar and R. I. L. Guthrie: “Mixing Models for Gas Stirred Metallurgical Reactors”, Metall. Mater. Trans. B, 17(1986), 725.
[22] S. M. Pan, J. D. Chiang and W. S. Wang: “Effects of Gas Injection Condition on Mixing Efficiency in the Ladle Refining Process”, J. Mater. Eng. Perform., 6(1997), 113.
[23] L. T. Khajavi and M. Barati: “Liquid Mixing in Thick-Slag-Covered Metallurgical Baths-Blending of Bath”, Metall. Mater. Trans. B, 41(2010), 86.
[24] K. Chattopadhyay, A. Sengupta, S. K. Ajmani, S. N. Lenka and V. Singn: “Optimisation of dual purging location for better mixing in ladle: a water model study”, Ironmaking and Steelmaking, 36(2009), 537.
[25] Y. Pan, D. Guo, J. Ma, W. Wang, F. Tang and C. Li: “Mixing Time and Fluid Flow Pattern of Composition Adjustment by Sealed Argon Bubbling with Ladles of Large Height/Diameter Ratio”, ISIJ Int., 34(1994), 794.
[26] M. Iguchi, K. I. Nakamura and R. Tsujino: “Mixing Time and Fluid Flow Phenomena in Liquids of Varying Kinematic Viscosities Agitated by Bottom Gas Injection”, Metall. Mater. Trans. B, 29(1998), 569.
[27] S. Asai, T. Okamota, J. C. He and I. Muchi: “Mixing Time of Refining Vessels Stirred by Gas Injection”, Trans. ISIJ, 23(1983), 43.
[28] M. Iguchi, R. Tsujino, K. I. Nakamura and M. Sano: “Effects of Surface Flow Control on Fluid Flow Phenomena and Mixing Time in a Bottom Blown Bath”, Metall. Mater. Trans. B, 30(1999), 631.
[29] U. P. Sinha and M. J. McNallan: “Mixing in Ladles by Vertical Injection of Gas and Gas-Particle Jets- A Water Model Study”, Metall. Mater. Trans. B, 16(1985), 850.
[30] K. Nakanishi, J. Szekely, T. Fujii, Y. Mihara and S. Iwaoka : “Stirring and its effect on aluminum deoxidation of steel in the ASEA-SKF furnace: Part I. Plant scale measurements and preliminary analysis”, Metall. Trans., 6B(1975), 111
[31] S. Asai, T. Okamoto, J. He and I. Muchi : “Mixing time of refining vessels stirred by gas injection”, ISIJ Int., 23(1983), 43
[32] D. Mazumdar and R. I. L. Guthrie : “Mixing models for gas stirred metallurgical reactors”, Metall. Trans., 17B(1986), 725
[33] J. M. Chou, M. C. Chuang, M. H. Yeh, W. S. Hwang, S. H. Lin S. T. Tsai and H. S. Wang: “Effects of process conditions on mixing between molten iron and slag in smelting reduction vessel via water model study”, Ironmaking and Steelmaking, 30(2003), 195.
[34] S. Yamachita, K. I. Miyamoto, M. Iguchi and M. Zeze: “Model Experiments on the Mixing Time in a Bottom Blown Bath Covered with Top Slag”, ISIJ Int., 43(2003), 1858.
[35] S. Joo and R. I. L. Guthrie: “Modeling Flows and Mixing in Steelmaking Ladles Designed for Single- and Dual-Plug Bubbling Operations”, Metall. Mater. Trans. B, 23(1992), 765.
[36] S. M. Pan, Y. H. Ho and W. S. Wang: “Three-Dimensional Fluid Flow Model for Gas-Stirred Ladles”, J. Mater. Eng. Perform., 6(1997), 311.
[37] M. Y. Zhu, T. Inomoto, I. Sawada and T. C. Hsiao: “Fluid Flow and Mixing Phenomena in the Ladle Stirred by Argon through Multi-Tuyere”, ISIJ Int., 35(1995), 472.
[38] M. Y. Zhu, I. Sawada, N. Yamasaki and T. C. Hsiao: “Numerical Simulation of Three-Dimensional Fluid Flow and Mixing Process in Gas-stirred Ladles”, ISIJ Int., 36(1996), 503.