| 研究生: |
賴芊卉 Lai, Chien-Hui |
|---|---|
| 論文名稱: |
ABC-XYZ存貨管理模式之研究—以安全帽成品存貨為例 A Study on ABC-XYZ Inventory Management Methods—Case of Safety-helmet Inventory Management |
| 指導教授: |
楊大和
Yang, Ta-Ho |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 製造資訊與系統研究所 Institute of Manufacturing Information and Systems |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | ABC-XYZ分析 、存貨管理 、簡單移動平均法 、神經網路 、機率分配擬合 、多目標決策 |
| 外文關鍵詞: | ABC-XYZ Analysis, Inventory Management, Simple Moving Average, Neural Networks, Probability Distribution Fitting, Multi-Criteria Evaluation |
| 相關次數: | 點閱:115 下載:33 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
存貨管理為各領域普遍的共通議題,為了能夠維持在市場上的競爭力,許多公司都致力於不斷改善存貨管理模式。本研究採用存貨水準及服務水準做為為存貨管理模式績效衡量標準。然而存貨水準與服務水準乃是一個兩難的議題,其目標會相互衝突,但公司仍需在兩者間相互權衡。同時為了解決傳統的ABC分類在實務中存貨單位(Stock Keeping Unit, SKU)分類效果的限制,結合以需求變異程度分類的XYZ分類,導入ABC-XYZ分類做為SKU的分類方法。
第一,本研究將建立一合適的ABC-XYZ動態補貨決策模型。使用ABC-XYZ分類法將SKU分類,並且在定期訂購(R, S)庫存政策的框架下分別使用四種參數計算方法(簡單移動平均法、神經網路、機率分配擬合、經驗法則),並進行實驗,再來利用績效指標進行實驗結果分析,最後得出各類別建議的補貨方式。
第二是討論服務水準與存貨水準在此案例中之權衡,將先對結果先進行確定性決策,使用單目標決策法在現有服務水準下進行決策,再利用多準則評估方法中的TOPSIS分析結合敏感度分析,評估服務水準與存貨水準兩項績效指標的表現,並觀察在不同權重下實驗結果的變化。最後會結合兩者的結果,得出各SKU類別明確的庫存管理模式供參考。
Inventory management is a common issue in all fields. Many companies are striving to improve their inventory management models in order to remain competitive in the marketplace. In this study, inventory level and service level are used as the performance measures of inventory management methods. However, inventory levels and service levels are a dilemma, with conflicting objectives, but companies still need to balance them against each other. In order to solve the limitation of the traditional ABC analysis in the practice of Stock Keeping Unit (SKU) classification, the ABC-XYZ analysis is introduced as the classification method of SKU by combining the XYZ analysis with the demand variation classification.
First, this study will establish an appropriate ABC-XYZ dynamic replenishment decision model. The SKUs are classified using the ABC-XYZ analysis, and four parameter calculation methods (Simple Moving Average, Neural Network, Probability Distribution Fitting, and Rule of Thumb) are used in the framework of the periodic ordering (R, S) inventory policy, and experiments are conducted.
Second, we will discuss the trade-off between service level and inventory level in this case. We will first make a decision by using the single-objective decision making method under the existing service level, and then evaluate the performance of the two performance indicators, service level and inventory level, by using TOPSIS analysis in the multi-criteria evaluation method combined with sensitivity analysis, and observe the changes of the experimental results under different weights of performance measures. Finally, the two results will be combined to derive a clear inventory management method for each SKU category.
岡上友太郎、櫻井多賀司(2004年)《庫存管理實務入門:最適庫存與管理要點剖析》,博誌文化,新北市。
林惠玲、陳正倉(2002)《統計學-方法與應用(上)(下)》(二版),雙葉書廊,臺北市。
袁國榮、李榮貴(2003)《強化限制理論Demand-Pull補貨模式之研究》,國立交通大學,新竹市。
張倫(2013)《當代物料與倉儲管理》,滄海書局,臺中市。
陳允傑(2019)《TensorFlow與Keras:Python深度學習應用實務》,旗標科技,臺北市。
陳孟吟(2014)《醫療衛材之間歇性需求消耗型態與預測模式之研究》,東海大學,臺中市。
黃河清(2020)《生產與作業管理》(第二版),新文京,新北市。
黃國源(2015)《類神經網路》,全華圖書,新北市。
葉怡成(2006)《類神經網路模式應用與實作》,儒林圖書有限公司,臺北市。
鄧振源(2012)《多準則決策分析:方法與應用》,鼎茂圖書,臺北市。
Acar, Y., and Gardner Jr, E. S. (2012). Forecasting method selection in a global supply chain. International Journal of Forecasting, 28(4), 842-848.
Beamon, B. M. (1998). Supply chain design and analysis: Models and methods. International Journal of Production Economics, 55(3), 281-294.
Bergstra, J., and Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of machine learning research, 13(2).
Boyd, S., Boyd, S. P., and Vandenberghe, L. (2004). Convex Optimization. Cambridge university press.
Chakravarty, A. (1981). Multi-item inventory aggregation into groups. Journal of the Operational Research Society, 32(1), 19-26.
Chien, C.-F., Lin, Y.-S., and Lin, S.-K. (2020). Deep reinforcement learning for selecting demand forecast models to empower Industry 3.5 and an empirical study for a semiconductor component distributor. International Journal of Production Research, 58(9), 2784-2804.
Dickie, H. F. (1951). ABC inventory analysis shoots for dollars not pennies. Factory Management and Maintenance, 109(7), 92-94.
Disney, S. M., Farasyn, I., Lambrecht, M., Towill, D. R., and Van de Velde, W. (2006). Taming the bullwhip effect whilst watching customer service in a single supply chain echelon. European Journal of Operational Research, 173(1), 151-172.
Disney, S. M., and Lambrecht, M. R. (2008). On replenishment rules, forecasting, and the bullwhip effect in supply chains. Foundations and Trends in Technology, Information and Operations Management, 2(1), 1-80.
Ernst, R., and Cohen, M. A. (1990). Operations related groups (ORGs): a clustering procedure for production/inventory systems. Journal of Operations Management, 9(4), 574-598.
Errasti, A., Chackelson, C., and Poler, R. (2010). An expert system for inventory replenishment optimization. International Conference on Information Technology for Balanced Automation Systems, Berlin, Germany.
Evdokimova, S. (2021). Segmentation of store customers to increase sales using ABC-XYZ-analysis and clustering methods. Journal of Physics: Conference Series, Novosibirsk, Russia.
Flores, B. E., Olson, D. L., and Dorai, V. (1992). Management of multicriteria inventory classification. Mathematical and Computer Modelling, 16(12), 71-82.
Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press.
Ghobbar, A. A., and Friend, C. H. (2002). Sources of intermittent demand for aircraft spare parts within airline operations. Journal of Air Transport Management, 8(4), 221-231.
Hagan, M. T., Demuth, H. B., and Beale, M. (1997). Neural network design. PWS Publishing Co.
Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural Networks, 4(2), 251-257.
Hwang, C.-L., and Yoon, K. (1981). Multiple Attribute Decision Making. Springer.
Johnston, F., Boylan, J. E., and Shale, E. A. (2003). An examination of the size of orders from customers, their characterisation and the implications for inventory control of slow moving items. Journal of the Operational Research Society, 54(8), 833-837.
keras.io. (2019). Why use Keras?, Keras, Retrieved May 24, 2022, Web site: https://keras.io/why_keras/,
Kourentzes, N. (2013). Intermittent demand forecasts with neural networks. International Journal of Production Economics, 143(1), 198-206.
Kuzmin, V., Zaliskyi, M., Odarchenko, R., Polishchuk, O., Ivanets, O., and Shcherbyna, O. (2020). Method of Probability Distribution Fitting for Statistical Data with Small Sample Size. 2020 10th International Conference on Advanced Computer Information Technologies (ACIT), Deggendorf, Germany.
Lancioni, R. A. (2000). New developments in supply chain management for the millennium. Industrial Marketing Management, 29(1), 1-6.
Loureiro, A. L., Miguéis, V. L., and da Silva, L. F. (2018). Exploring the use of deep neural networks for sales forecasting in fashion retail. Decision Support Systems, 114, 81-93.
Markham, I. S., and Rakes, T. R. (1998). The effect of sample size and variability of data on the comparative performance of artificial neural networks and regression. Computers & Operations Research, 25(4), 251-263.
Meyer, C. R., Boes, J. L., Kim, B., Bland, P. H., Zasadny, K. R., Kison, P. V., Koral, K., Frey, K. A., and Wahl, R. L. (1997). Demonstration of accuracy and clinical versatility of mutual information for automatic multimodality image fusion using affine and thin-plate spline warped geometric deformations. Medical Image Analysis, 1(3), 195-206.
Millstein, M. A., Yang, L., and Li, H. (2014). Optimizing ABC inventory grouping decisions. International Journal of Production Economics, 148, 71-80.
Nenes, G., Panagiotidou, S., and Tagaras, G. (2010). Inventory management of multiple items with irregular demand: A case study. European Journal of Operational Research, 205(2), 313-324.
Pandya, B., and Thakkar, H. (2016). A review on inventory management control techniques: ABC-XYZ analysis. REST Journal on Emerging trends in Modelling and Manufacturing, 2(3), 2016.
Partovi, F. Y., and Anandarajan, M. (2002). Classifying inventory using an artificial neural network approach. Computers & Industrial Engineering, 41(4), 389-404.
Pontes, F. J., Amorim, G., Balestrassi, P. P., Paiva, A., and Ferreira, J. R. (2016). Design of experiments and focused grid search for neural network parameter optimization. Neurocomputing, 186, 22-34.
Porras, E., and Dekker, R. (2008). An inventory control system for spare parts at a refinery: An empirical comparison of different re-order point methods. European Journal of Operational Research, 184(1), 101-132.
Priore, P., Ponte, B., Rosillo, R., and de la Fuente, D. (2019). Applying machine learning to the dynamic selection of replenishment policies in fast-changing supply chain environments. International Journal of Production Research, 57(11), 3663-3677.
Ramanathan, R. (2006). ABC inventory classification with multiple-criteria using weighted linear optimization. Computers & Operations Research, 33(3), 695-700.
Rego, J. R., and Mesquita, M. A. (2015). Demand forecasting and inventory control: A simulation study on automotive spare parts. International Journal of Production Economics, 161, 1-16.
Savic, D. (2002). Single-objective vs. multiobjective optimisation for integrated decision support. 1st International Congress on Environmental Modelling and Software, Lugano, Switzerland
Scholz‐Reiter, B., Heger, J., Meinecke, C., and Bergmann, J. (2012). Integration of demand forecasts in ABC‐XYZ analysis: practical investigation at an industrial company. International Journal of Productivity and Performance Management.
Segerstedt, A. (1994). Inventory control with variation in lead times, especially when demand is intermittent. International Journal of Production Economics, 35(1-3), 365-372.
Seyedan, M., and Mafakheri, F. (2020). Predictive big data analytics for supply chain demand forecasting: methods, applications, and research opportunities. Journal of Big Data, 7(1), 1-22.
Silva-Ramírez, E.-L., Pino-Mejías, R., López-Coello, M., and Cubiles-de-la-Vega, M.-D. (2011). Missing value imputation on missing completely at random data using multilayer perceptrons. Neural networks, 24(1), 121-129.
Silver, E. A., Pyke, D. F., and Peterson, R. (1998). Inventory Management and Production Planning and Scheduling (Vol. 3). Wiley New York.
Silver, E. A., and Robb, D. J. (2008). Some insights regarding the optimal reorder period in periodic review inventory systems. International Journal of Production Economics, 112(1), 354-366.
Stojanović, M., and Regodić, D. (2017). The significance of the integrated multicriteria ABC-XYZ method for the inventory management process. Acta Polytechnica Hungarica, 14(5), 29-48.
Suzuki, K. (2013). Artificial Neural Networks: Architectures and Applications. BoD–Books on Demand.
Svetunkov, I., and Petropoulos, F. (2018). Old dog, new tricks: a modelling view of simple moving averages. International Journal of Production Research, 56(18), 6034-6047.
Syntetos, A. A., and Boylan, J. E. (2006). On the stock control performance of intermittent demand estimators. International Journal of Production Economics, 103(1), 36-47.
Tarim, S. A., and Smith, B. M. (2008). Constraint programming for computing non-stationary (R, S) inventory policies. European Journal of Operational Research, 189(3), 1004-1021.
Teunter, R. H., Babai, M. Z., and Syntetos, A. A. (2010). ABC classification: service levels and inventory costs. Production and Operations Management, 19(3), 343-352.
Teunter, R., and Sani, B. (2009). Calculating order-up-to levels for products with intermittent demand. International Journal of Production Economics, 118(1), 82-86.
Vereecke, A., and Verstraeten, P. (1994). An inventory management model for an inventory consisting of lumpy items, slow movers and fast movers. International Journal of Production Economics, 35(1-3), 379-389.
Walczak, S., and Cerpa, N. (1999). Heuristic principles for the design of artificial neural networks. Information and Software Technology, 41(2), 107-117.
Willemain, T. R., Smart, C. N., and Schwarz, H. F. (2004). A new approach to forecasting intermittent demand for service parts inventories. International Journal of Forecasting, 20(3), 375-387.
Williams, T. M. (1984). Stock control with sporadic and slow-moving demand. Journal of the Operational Research Society, 35(10), 939-948.
Zenkova, Z., and Kabanova, T. (2018). The ABC-XYZ analysis modified for data with outliers. 2018 4th International Conference on Logistics Operations Management (GOL), Le Havre, France.