研究生: |
馮冠文 Feng, Guan-Weng |
---|---|
論文名稱: |
高分子發光二極體元件於變溫量測下特性之研究 The characteristics of polymer light-emitting diodes with varied temperature |
指導教授: |
郭宗枋
Guo, Tzung-Fang |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 77 |
中文關鍵詞: | 空間電荷 、低溫 、變溫 、有機電激發光元件 、聚芴高分子 |
外文關鍵詞: | organic light-emitting diodes, space charge, ultra low temperature, varied temperature, SCLC, polyfluorene, PLED, OLED |
相關次數: | 點閱:122 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文使用自製之低溫控制機具結合光電特性測量系統進行低溫恆溫以及低溫變溫下操作元件之實驗,目的在極低溫下能凍結有機膜的相貌,藉由低溫操作下維持元件之發光顏色,證明我們對於聚芴高分子藍光有機電激發光二極體於常溫操作下變色機制是屬於薄膜型貌變化的假設,而非先前文獻所言的屬於高分子劣化反應。找出聚芴高分子藍光元件在偏壓作用下變化原因,提供一合理正確的藍光材料必須改進的方向。
另外,使用對溫度變化修正過之SCLC(Space Charge Limited Current)公式來檢視低溫變溫下聚芴高分子及其他共軛高分子電洞(Hole-only)元件電特性,並依照擬合之相符程度提出電洞元件J-V曲線特性在低溫下之合理解釋。各種材料之電洞元件於低電場(< 3×105 V/cm)下(電荷注入點之前)之電特性符合移動率固定之SCLC,而高於此電場則必須考慮到Poole-Frenkel effect 對載子移動率帶來的影響。
最後在低溫變溫測量中發現PLEDs電激發光光譜的兩個現象,降溫下EL光譜紅位移現象及降溫下元件效率提升現象。在參考無機半導體或螢光體低溫下測量之文獻,對這兩項發現做出合理的解釋為低溫下分子熱擾動減少,電子在激發態的時間變長,有足夠的時間讓激發的電子緩解至最低激發態能階再行放光,所以平均發光能隙減少。此外,低溫下分子振動情況降低避免激子產生非輻射放射,所以低溫下EL增強。
In this thesis, we proposed that the mechanism of color shifting of polyfluorene(PFO) light emitting devices is polymer film morphology reformation during operating in room temperature. In low temperature environment, about 85K, the color shifting was not happened instead of red-shift in room temperature. This result indicated the color shift is not caused by material degradation which was reported in other groups’ study, and provided a value information for improvement of blue polymer LED (PLED) material.
Also, in low temperature environment, J-V characteristics of PFOs and many conjugated polymer devices were compared with the results of temperature-dependent Space Charge Limited Current(SCLC) simulation. It was found that J-V curves of these polymers were well matched with SCLC in low electric field(<3×105 V/cm) and with fixed carrier mobility. When electric field is stronger than 3×105 V/cm), Poole-Frenkel effect which influences carrier mobility must be taken into account.
Finally, two electroluminescence (EL) phenomenon were observed in different temperature measurements. When temperature decreased, one was that red-shifting of EL spectrum, and the other was the increasing of PLED efficiency. Based on inorganic semiconductor theories, these phenomenon were implied that molecular thermal vibration is lower, relaxation life time is longer, and non-radiative transition is reduced in low temperature.
1. M. Pope, H. P. Kallmann and P.J. Magnante,
"Electroluminescence in Organic Crystals," J. Chem.
Phys. 38, 2042 (1963).
2. John G. Simmons, " Poole-Frenkel Effect and Schottky Effect
in Metal-Insulator-Metal Systems," Phys. Rev. 155, 657
(1967).
3. W. D. Gill, "Drift mobilities in amorphous charge-transfer
complexes of trinitrofluorenone and
poly-n-vinylcarbazole," J. Appl. Phys. 43, 5033(1972).
4. C. W. Tang and S. A. VanSlyke, "Organic electroluminescent
diodes," Appl. Phys. Lett. 51, 913 (1987).
5. J. H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Mark,
K. Mackay, R. H. Friend, P.L. Burn and A. B. Holmes,
"Light-emitting diodes based on conjugated polymers,"
Nature 347, 539 (1990).
6. D. Braun and A. J. Hegger, "Visible light emission from
semiconducting polymer diodes, " App. Phys. Lett. 58,
1982 (1991).
7. I. D. Parker, "Carrier tunneling and device characteristics in
polymer light-emitting diodes, " J. Appl. Phys. 75, 1656
(1994).
8. P. W. M. Blom, M. J. M. de Jong, and J. J. M. Vleggaar,
"Electron and hole transport in poly(p-phenylene vinylene)
devices," Appl. Phys. Lett. 68, 3308 (1996).
9. P. W. M. Blom, M. J. M. de Jong, and M. G. van Munster,
" Electric-field and temperature dependence of the hole
mobility in poly(p-phenylene vinylene)," Phys. Rev. B 55, 656
(1997).
10. P. W. M. Blom, M. J. M. de Jong, and S. Breedijk,
"Temperature dependent electron-hole recombination in
polymer light-emitting diodes," Appl. Phys. Lett. 71, 930
(1997).
11. P. W. M. Blom and Marc J. M. de Jong, "Electrical
Characterization of Polymer Light-Emitting Diodes," IEEE
JOURNAL OF SELECTED TOPICS IN QUANTUM
ELECTRONICS 4, 105 (1998).
12. M. A. Reshchikov, G.-G. Yi, and B. W. Wesswls, "Behavior
of 2.8- and 3.2-eV photoluminescence bands in Mg-doped
GaN at different temperatures and excitation densities," Phys.
Rev. B 59, 13176 (1999).
13. K.-H. Wienfurter, H. Fujikawa, S. Tokito, and Y. Taga,
"Highly efficient pure blue electro- luminescence from
polyfluorene: Influence of the molecular weight distribution
on the aggregation tendency," Appl. Phys. Lett. 76, 2502
(2000).
14. A. R. Buckley, M. D. Rahn, J. Hill, J. Cabanillas-Gonzalez,
A. M. Fox, and D. D. C. Bradley, "Energy transfer dynamics
in polyfluorene-based polymer blends," Chem. Phys. Lett.
339, 331 (2001).
15. P. A. Lane et al., "Origin of electrophosphorescence from a
doped polymer light emitting diode, " Phys. Rev. B 63,
235206 (2001).
16. U. Scherf and E. List, "Semiconducting Polyfluorenes -
Towards Reliable Structure-Property Relationships," Adv.
Mater. (Weinheim, Ger.) 14, 477 (2002).
17. X. Gong, P. K. Iyer, D. Moses, G. C. Bazan, A. J. Heeger,
and S. Xiao, "Stabilized Blue Emission from Polyfluorene-
Based Light-Emitting Diodes: Elimination of Fluorenone
Defects," Adv. Funct. Mater. 13, 325 (2003).
18. Akira Sugimoto, Hideo Ochi, Soh Fujimura, Ayako Yoshida,
Toshiyuki Miyadera, and Masami Tsuchida, "Flexible OLED
Displays Using Plastic Substrates," IEEE JOURNAL OF
SELECTED TOPICS IN QUANTUM ELECTRONICS 10, 107
(2004).
19. X. Gong, D. Moses, A. J. Heeger, and S. Xiao, "White Light
Electrophosphorescence from Polyfluorene-Based
Light-Emitting Diodes: Utilization of Fluorenone Defects," J.
Phys. Chem. B 108, 8601 (2004).
20. S. Gamerith, C. Gadermaier, U. Scherf, and E. List, "Emission
properties of pristine and oxidatively degraded polyfluorene
type polymers," Phys. Status Solidi A 201, 1132 (2004).
21. Amit Kumar, P. K. Bhatnagar, and P. C. Mathur et al.,
"Temperature and electric-field dependences of hole mobility
in light-emitting diodes based on poly [2-methoxy-5-
(2-ethylhexoxy)-1, 4-phenylene vinylene]," J. Appl. Phys. 98,
024502 (2005).
22. A. Kadashchuk, R. Schmechel, H. von Seggern, U. Scherf,
and A. Vakhnin, "Charge-carrier trapping in polyfluorene-
type conjugated polymers," J. Appl. Phys. 98, 024101 (2005).
23. R. Farchioni, G. Grosso, "Organic Electronic Materials-
Conjugated Polymers and Low Molecular Weight Organic
Solids," Springer-Verlag, Berlin Heidelberg (2001).
24. S. M. Sze, "Semiconductor Sevices-Physics and Technology
2nd Edition," John Wiley & Sons (2002).
25. William R. Salaneck, Kazuhiko Seki, Antoine Kahn,
Jean-Jacques Pireaux, "Conjugated Polymer and Molecular
Interfaces," Marcel Dekker, New York (2002).
26. Hari Hingh Nalwa, Lauren Shea Rohwer, "Handbook of
Luminescence, Display Materials, and Devices-Organic
Light-Emitting Diodes," American Scientific Publishers,
California (2003).
27. Joseph Shinar, "Organic Light-Emitting Devices,"
Springer-Verlag, New Tork (2004).
28. 城戶淳二, 圖解有機EL, 世茂出版社 (2004).
29. 許博鈞, "共軛高分子於發光元件之研究," 國立成功大學
化學工程研究所碩士論文 (2004).
30. Zakya H. Kafafi, "Organic Electroluminescence," CRC Press
Taylor & Francis Group (2005), p. 39-41.
31. 陳金鑫, 黃孝文, "有機電激發光材料與元件", 五南出版社
(2005).
32. Alexey N. Krasnov, "High-contrast organic light-emitting
diodes on flexible substrates," Appl. Phys. Lett. 80, 3853
(2002).
33. Shin-Rong Tseng, Shi-Chang Lin, and Hsin-Fei Meng et al,
"General method to solution-process multilayer polymer
light-emitting diodes, " Appl. Phys. Lett. 88, 163501 (2006).
34. Ming-Chin Hung, Jin-Long Liao, Show-An Chen, Su-Hua
Chen, and An-Chung Su, "Fine Tuning the Purity of Blue
Emission from Polydioctylfluorene by End- Capping with
Electron-Deficient Moieties," J. AM. CHEM. SOC. 127,
14576 (2005).