簡易檢索 / 詳目顯示

研究生: 楊奇儒
Yang, Chi-Ru
論文名稱: 低污染拜香研發:拜香主要成分對拜香燃煙特徵之影響
Development of less-polluting incense: Correlation between the main ingredients and emission characteristics of burning incense
指導教授: 林達昌
Lin, Ta-Chang
學位類別: 博士
Doctor
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 162
中文關鍵詞: 香灰金屬鹽類懸浮微粒拜香多環芳香烴化合物質量中位數氣動粒徑
外文關鍵詞: MMAD, Metallic salts, Particulate, Incense, PAHs, Ash
相關次數: 點閱:101下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究選取市面上常用之九種拜香,將其分別置於自製之燃燒室內,通入已淨化之空氣進行燃燒,配合微孔均勻沈積衝擊器(MOUDI)及填充吸附劑(XAD-2)之玻璃套筒,將可分別全量收集拜香燃煙中之粒狀及氣狀污染物質且不受背景空氣污染物之干擾,以探討拜香原料中主要成分對於燃燒特徵的影響。
    研究結果顯示,不同種類拜香中所含之金屬含量有顯著差異,而主要金屬類型相似,其含量排序之差異亦不大,均以Ca、K含量為最多。燃燒不同種類相似尺寸拜香之燃盡時間、燃燒速率、懸浮微粒排放係數、灰質量排放係數、單位時間灰質量產生率等均有顯著差異,然而單位時間懸浮微粒質量產生率卻相當類似。此外,單一支拜香之燃燒時間越短,則所排放的總微粒質量越少。而單位重量所排放之香灰越多則所排放的懸浮微粒就越少,可作為一般民眾在選擇拜香時於健康考量上的簡單判斷依據。九種拜香燃煙之平均質量中位數粒徑(MMAD)為262 nm,凝結作用為影響拜香燃煙之MMAD之重要機制之一。P-PAHs(固相多環芳香烴化合物)之毒性效應遠高於G-PAHs(氣相多環芳香烴化合物)有50倍以上。而P-PAHs並無明顯集中於單一粒徑,PAHs排放量於不同粒徑分佈與懸浮微粒情形相當類似。
    在製造過程中適度的增加拜香成分中重金屬成分,如Ca、Al、Fe、Mg及K,可有效減少燃燒拜香時懸浮微粒的產生量。碳酸鈣(CaCO3)為製造拜香時最常用來降低成本之添加劑,添加Ca含量由0.5%增加至5%時,可有效將燃燒拜香時之懸浮微粒產生量減少約一半。若Ca含量由0.5%增加至2.0%時,約可降低PAHs產生量15-30%,可有效減少拜香燃煙對於民眾之健康危害,亦可做為進一步研擬改善降低拜香燃燒產生懸浮微粒方法之重要參考資料。

    A combustion chamber study was conducted for nine types of incenses. They were separately burned in the chamber continuously supplied with clean and filtered air. Solid and gas phase pollutants from each burned incense were quantitatively collected with a micro-orifice uniform deposited impactor (MOUDI) and an XAD-2 cartridge, respectively. The main metallic contents in raw material incense were analyzed by inductively coupled plasma atomic emission spectrometry; influence of the main metallic contents upon the characteristics of combustion was evaluated.
    The metals content in different types incense were obviously different. However, the order of quantities of metal elements was similar in all incenses. The contents of Ca and K were the highest among all metallic elements in the raw materials of the incense. Under the same burning conditions, the combustion duration, burning rate, ash emission factor, and particulate emission factor and ash generation rate varied among different types of incense. The particulate generation rates are however quite similar among all incense — the shorter the combustion duration of a stick, the lower the total suspended particulate emission. Additionally, with the same incense weight burned, the greater the emission of ash, the lower the emission of suspended particulate. Consumers can select healthy incense based on these results.
    The average mass median aerodynamic diameter (MMAD) of the smoke aerosol was 262 ± 49 nm. Coagulation was a major mechanism that dictates the MMAD of the smoke. For each type of incense investigated in this study, the Total-BaPeq of the P-PAHs was found to be consistently more than fifty times higher than that of the corresponding G-PAHs. No specific pattern in particle size distribution was found for P-PAHs.
    Appropriate amount of metals addedwould reduce the level of suspended particulates in incense burning. Ca was inorganic salt, CaCO3 which is added during production due to its low cost.
    More importantly, increasing the calcium content from 0.5 to 5.0% by adding CaCO3 reduced the particulate emission from incense by approximately 50%. Changing the calcium content from 0.5 to 2.0% would decrease 15-30% of the emission of P-PAHs. Therefore, addition of CaCO3 to the raw material incense will efficiently decrease genotoxic P-PAHs, hence reduce the damage to the human respiration system.

    中文摘要 I 英文摘要 III 致謝 V 總目錄 VII 圖目錄 XI 表目錄 XIII 第一章 前言 1 1-1 研究動機 1 1-2 研究目的及內容 2 第二章 文獻回顧 3 2-1 拜香的介紹 3 2-1-2 線香的組成 3 2-1-3 拜香的種類 3 2-1-4 拜香原料中之PAHs 4 2-1-5 拜香燃煙特徵 5 2-2 PAHs 9 2-2-1 PAHs的定義 9 2-2-2 PAHs的形成機制 12 2-2-3 PAHs對人體的危害 14 2-2-4 PAHs毒性評估指標BaPeq 17 2-3 微量空氣生物毒性測試 19 2-3-1 安姆氏試驗測試原理 19 2-3-2 安姆氏試驗之優點 22 2-4 木材之成分分析及其灰之組成 22 2-5 金屬離子於悶燒中所扮演角色 22 第三章 實驗方法與步驟 25 3-1 研究方法 25 3-2 實驗設計 27 3-2-1 拜香之選擇 27 3-2-2 採樣設計與規劃 28 3-2-3 採樣設備 31 3-2-4 採樣地點 34 3-3 採樣前之準備 34 3-3-1 拜香前處理 34 3-3-2 濾紙前處理 34 3-3-3 玻璃套筒前處理 35 3-3-4 流量校正 35 3-3-5 矽膠與無水硫酸鈉之前處理 36 3-4 樣品分析 36 3-4-1 萃取 36 3-4-2 濃縮 37 3-4-3 淨化 37 3-4-4 再濃縮與溶劑的轉置 38 3-4-5 GC/MS分析 38 3-4-6 元素分析 39 3-4-7 水份、灰份、可燃份分析 40 3-4-8 金屬元素之定性分析及結構分析 40 3-4-9 金屬元素之定量分析 41 3-5 AMES TEST 毒性測試 46 3-5-1 試驗流程 46 3-5-2 基本需求之設備 47 3-5-3 試驗之配藥與菌種培養 48 3-5-4 S9混和液之製備 50 3-5-5 試驗程序 51 3-5-6 試驗之數據與毒性判定 53 第四章 數據分析之品質保證及品質控制 55 4-1 空白試驗 55 4-1-1 溶劑空白試驗 55 4-1-2 程序空白試驗 55 4-1-3 毒性空白試驗 55 4-2 標準品回收率測試 59 4-3 標準品檢量線之建立 59 4-4 重複分析 61 4-5 金屬元素空白試驗 64 4-5-1 溶劑空白試驗 64 4-5-2 程序空白試驗 64 4-5-3 金屬元素標準品回收率測試 64 4-5-4 重複分析 65 第五章 結果與討論 67 5-1 拜香之原料組成 67 5-1-1 元素分析(碳、氫、氧、氮) 67 5-1-2 金屬元素分析 68 5-2 拜香燃燒排放污染物特徵 74 5-2-1 燃燒時間及燃燒速率 74 5-2-2 拜香灰排放特徵 76 5-2-3 懸浮微粒 77 5-2-4 拜香燃燒後之金屬元素排放 84 5-2-5 多環芳香烴化合物(PAHs) 91 5-2-6 固態萃取物之生物基因毒性測試(Ames Test) 104 5-3 燃燒特徵之相關係性 107 5-3-1 燃燒時間與懸浮微粒質量排放係數之相關性 107 5-3-2 灰與懸浮微粒質量排放係數之相關性 109 5-4 拜香金屬成分燃燒特徵相關性 111 5-4-1 燃燒速率與原料金屬成分相關性 111 5-4-2 懸浮微粒質量排放係數與原料金屬成分相關性 114 5-4-3 灰質量排放係數與原料金屬成分相關性 116 5-4-4 P-PAHs排放係數與原料中Ca金屬成分相關性 117 第六章 結論與建議 119 6-1 結論 119 6-2 建議 121 參考文獻 123 附錄A 環保署研擬中之室內空氣品質標準草案 131 附錄B 十六種PAHs之檢量線(GC/MS) 135 附錄C 十一種重金屬之方法偵測極限 151 附錄D 十六種PAHs之離子選擇 157 圖目錄 圖2-1-1 懸浮微粒可進入人體之位置圖 8 圖2-2-1 Bay-region示意圖 [Thakker, 1985] 17 圖3-1-1 研究流程圖 26 圖3-2-1 實驗燃燒室採樣配置圖 30 圖3-2-2 氣固相採樣模組 33 圖3-3-1 流量校正曲線 36 圖3-5-1 Ames試驗流程圖 46 圖5-1-1 以XRD進行三種拜香原料金屬結構分析結果 73 圖5-2-1 九種拜香燃煙粒徑累積百分比圖 81 圖5-2-2 粒徑最大(拜香D)與最小(拜香A)兩種拜香燃煙懸浮微粒之粒徑分佈 82 圖5-2-3 懸浮微粒排放量(mg/支)與拜香燃煙MMAD之相關性 83 圖5-2-4 拜香原料中七種主要金屬成分於不同拜香之質量濃縮倍率 87 圖5-2-5 拜香燃燒後主要金屬元素成份存在於灰中比例之推估 90 圖5-2-6 拜香燃燒後懸浮微粒中主要金屬元素排放係數推估值 90 圖5-2-7 燃燒九種拜香所產生氣相及固相PAHs之排放係數 93 圖5-2-8 燃燒九種拜香後排放十六項G-PAHs佔G-PAHs及P-PAHs之比例圖 95 圖5-2-9 各階粒徑所收集之P-PAHs含量與其毒性當量(Total-BaPeq)之相關性分析(45類樣品) 101 圖5-3-1 每支拜香燃燒時間與懸浮微粒產生量相關性分析 108 圖5-3-2 燃燒拜香所產生懸浮微粒與灰排放係數之相關性 110 圖5-4-1 拜香原料之Ca元素含量與其燃燒速率之關係圖 113 圖5-4-2 拜香原料中總金屬含量與總懸浮微粒排放係數之相關性 115 圖5-4-3 四組俗稱相同拜香之Ca含量與燃燒後P-PAHs排放係數相關圖 118 表目錄 表2-2-1 十六種PAHs之分子量、化學式與結構式 10 表2-2-2 十六種PAHs之致癌性及致突變性 15 表2-2-3 十六種PAHs與其TEFcompound 18 表2-3-1 安姆氏試驗各突變菌系及其基因特性 21 表3-2-1 九種拜香之外觀物理特徵 28 表3-2-2 MOUDI採樣器各層之氣動粒徑 32 表3-4-1 GC/MS參數設定 39 表3-4-2 微波消化過程之輸出功率 42 表3-4-3 十一種金屬元素之ICP-AES偵測波長 45 表4-1-1 程序空白試驗 57 表4-1-2 毒性空白試驗 58 表4-2-1 PAHs標準品回收率(n=3) 60 表4-4-1 十六種PAHs之GC滯留時間 62 表4-4-2 十六種PAHs之面積值 63 表4-5-1 空白消化液之十一種金屬元素濃度 64 表4-5-2 十一種金屬元素回收率計算(N=3) 65 表4-5-3 十一種金屬之重複分析(ppm) 66 表5-1-1 九種拜香原料之元素分析 67 表5-1-2 螢光分析儀定性及半定量分析九種拜香原料金屬含量 69 表5-1-3 九種拜香原料中十一種金屬成分之ICP分析結果 72 表5-2-1 九種拜香之燃燒特徵及排放污染物特徵 75 表5-2-2 九種拜香燃煙中粒狀物粒徑分佈表 80 表5-2-3 九種拜香灰之主要金屬成分(mg/g-ash) 86 表5-2-4 固相多環芳香烴之排放係數與等BaP毒性當量(BaPeq)彙整表 94 表5-2-5 各種燃料燃燒排放PAHs之特徵比值 96 表5-2-6 九種拜香燃煙於各粒徑之P-PAHs排放係數(μg/g) 98 表5-2-7 分析九種拜香燃煙不同粒徑懸浮微粒上之PAHs含量及總毒性當量 103 表5-2-8 九種拜香燃煙固態萃取物在未添加S9之Ames Test 結果 105 表5-2-9 九種拜香燃煙固態萃取物在添加S9之Ames Test 結果 106 表5-4-1 各種金屬成分含量與燃燒特徵之相關性 112

    參考文獻
    Aceves, M., Grimalt, J.O., “Seasonally dependent size distributions of aliphatic and polycyclic aromatic hydrocarbons in urban aerosols from densely populated areas” Science of the Total Environment, 102, p 241−251, 1993.
    Alsberg, T., Stenberg, U., Westerholm, R. and Strandell, M., “Chemical and biological characterization of organic material from gasoline exhaust particles” Environ. Sci. Technol., 19, p 43-50, 1985.
    Ames, B.N., “Method for Detecting Carcinogens and Mutagens with the Salmonella/Mammalian Microsome Mutagenicity Test”, Mutation Res., 31, p 347-364, 1975.
    Atkinson, R., Arey, J., “Atmospheric chemistry of gas-phase polycyclic aromatic hydrocarbons: formation of atmospheric mutagens” Environ Health Perspect., 102, p 117-126, 1994.
    Barbara, J., Pitts, J.N., “Atmospheric Chemistry: Fundamentals and Experimental Techniques” John Wiley & Sons, Inc, 1986.
    Beak, S.O., Field, R.A., Goldstone, M.A., Kirk, P.W., Lester, J.N., Perry, R., “A review of polycyclic aromatic hydrocarbons: sources, fate and behavior” Water, Air and Soil Pollution 60, p 279−300, 1991.
    Baker, J., Foster, E., Eisenreich, S.J., “PCBs and PAHs as Trace of Particle Dynamics in Large Lakes” Journal of Great Lake Research, 15, p 84-103, 1989.
    Bjrseth, A., “Handbook of polycyclic aromatic hydrocarbons”, Marcel Dekker Inc., New York, p 727, 1983.
    Bjrseth, A., Ramdahl, T., “Handbook of Polycyclic Aromatic Hydro- carbons. Volume 2 Emission Sources and Recent Progress in Analytical Chemistry”, Marcel Dekker, New York, 1985.
    Bolt, H.M., “Special aspects of endocrine modulators in human and environmental risk assessment of existing chemicals” Toxicology Letters, 95, 15, 1999.
    Butler, J.D., Crossley, P., “Reactivity of PAH Adsorbed on Soot Particles”, Atmospheric Environment, 15, p 91-94, 1981.
    Byung-Ik, P., Joseph, W., Bozzelli, M., Booty R., “Pyrolysis and oxidation of cellulose in a continuous-feed and-flow reactor: effects of NaCl” Ind. Eng. Chem. Res., 41 p 3526-3539, 2002.
    Chao, H.R., Lin, T.C., Hsieh, J.H., “Composition and characteristics of PAH emissions from Taiwanese temples” J. Aerosol Sci. 1, p 303-304, 1997.
    Chen C.J., Wang Y.F., Shieh T., Chen J.Y., Lin M.Y. “Multi-factorial etiology of nasopharyngeal carcinoma” Head and Neck Oncology Research Conference, p 469-476, 1987.
    Cheng, W.E., Bechtold, Y.C.C., Hung, I.F., “Incense Smoke: Characterization and Dynamics in Indoor Environments” Aerosol Science and Technology 23, p 271-281, 1995.
    Dansette, P.M., Alexandrov, K., Zered, R. and Frayssinnt, C.H., “The effect of some mixed function oxidase inducers on aryl hydrocarbon hydroxylase and epoxide hydrase in nuclei and microsome from rat liver and lung. The effect of cigarette smoke” Eur. J. Cancer., 15, p 915-923, 1979.
    Dias, J.R., “Handbook of Polycyclic Hydrocarbons” Elsevier, Amsterdam, 1987.
    Dua, S.K., Hopke, P.K., “Hygroscopicity Growth of Assorted Indoor Aerosols” Aerosol Sci. & Technol., 24, p 151-160 1996.
    Dyakonov, A.J., Grider, D.A., “Smolder of cellulosic fabrics. II. Water, alkali and inner oxygen as variables” Journal of Fire Sciences, 17, 1, p 71-85, 1999.
    Ebert, L.B., “Polynclear Aromatic Compounds” American Chemical Society., Washington, D.C., 1988.
    Fang, G.C., Chang, C.N., Wu, Y.S., Yang, C.J., Chang, S.C., Yang, I.L., “Suspended particulate variations and mass size distributions of incense burning at Tzu Yun Yen temple in Taiwan, Taichung” The Science of the Total Environment, 299, p 79–87, 2002.
    Fang, G.C., Chu, C.C., Wu, Y.S., Fu, P.C., “Metallic elements in particulates released during incense-burning at Tzu Yun Yen temple, Taichung, Taiwan” International Journal of Environment and Pollution, 19, 6, p 1-9, 2003.
    Fang, G.C., Chang, C.N., Chu, C.C., Wu, Y.S., Fu, P.C. and Yang,I.L., “Fine (PM2.5), coarse (PM2.5-10) and metallic elements of suspended particulates for incense burning at Tzu Yun Yen temple in central Taiwan” Chemosphere, 51, p 983-991, 2003.
    Folinsbee, L., “Human health effects of air pollution”., Environ Health Perspect, 100, p 45-56, 1992.
    Gibbs, G.W., Horowitz, I., “Lung cancer mortality in aluminum reduction plant workers” J. Occup. Med., 21, 5, p 347-353, 1979.
    Grimmer, G., ”Environmental Carcinogens : Polycyclic Aromatic Hydrocarbons” Environ. Sci. Technol., 24, p 1581-1585, 1983.
    Grimmer, G., Naujack, K.W., Schreider, D., “Changes in PAH Profiles in Different Areas of a City during the Year. In Polynuclear Aromatic Hydrocarbons; Chemistry and Biological Effects” Battelle Press, Columbus, p 107-125, 1983.
    Huynh, C.K., Savolainen, H., Vu-Due, T., Guillemin, M., Iseln, F., “Impact of thermal proofing of a church on its indoor air quality: The combustion of candels and incense as a source of pollution” The Science of the Total Environment, 102, p 241-251, 1991.
    Jetter, J.J., Guo, Z., Jenia A. McBrian, Michael R. Flynn., “Characterization of emissions from burning incense” The Sci. of the Total Environ., 295, p 51–67, 2002.
    Josephson, J., “Polycyclic aromatic hydrocarbon” Environ. Sci. Technol., 18, p 93A-95A, 1984.
    Kellogg, D.S., Waymack, B.E., McRae, D.D., Chen, P., Dwyer, R.W., “The Initiation of Smoldering Combustion in Cellulosic Fabrics” Journal of Fire Sciences, 16, 2, p 88-95, 1998.
    Karcher, W., “Reference Materials for the Analysis of Polycyclic Aromatic Compounds Handbook of Polycyclic Aromatic Hydrocarbons” Marcel Dekker, Inc., 1983.
    Kavlock, R.J., “Overview of endocrine disruptor research activity in the United States” Chemosphere, 39, p 1225-1370, 1999..
    Lewis, J., “An Indian policy at EPA”, EPA Journal, 12, 23-26, 1986.
    Lee, W. J., Wang, Y. F., Lin, T. C., Chen, Y. Y., Lin, W. C., and Ku, C. C., “PAH Characteristics in the Ambient Air of Traffic-Source” The Science of the Total Environment, 159, p 185-200. 1995.
    Li, C.K., Kamens, R.M., “The use of polycyclic aromatic hydrocarbons as source signatures in receptors modeling” Atmos. Environ., 27, 4, p 523-532, 1993.
    Li, Chih-Shan, Ro, Yu-Sun, “Indoor characteristics of polycyclic aromatic hydrocarbons in the urban atmosphere of Taipei” Atmospheric Environment, 34, p 611-620, 2000.
    Lin, Ta-Chang, Chang, Feng-Hsiang, Hsieh, Jue-Hsien, Chao, How-Ran, Chao, Mu-Rong, “Characteristics of polycyclic aromatic hydrocarbons and total suspended particulate in indoor and outdoor atmosphere of a Taiwanese temple” Journal of Hazardous Materials, 95, p 1–12, 2002.
    Löfroth, G., Stensman, C., Brandhorst-Satzkorn, M., “Indoor sources of mutagenic aerosol part: culate matter: smoking, cooking and incense buring” Mut. Res., 264, p 21-28, 1991.
    Lung, S.C., Hu, S.C., “Generation rates and emission factors of particulate matter and particle-bound polycyclic aromatic hydrocarbons of incense sticks” Chemosphere, 50, p 673–679, 2003.
    Maron D.M. and Ames B.N., “Revised methods for the Salmonella mutagenicity test” Mutation Res., 113, p 173-215, 1983.
    Masclet, P., Mouvier, G., Nikolaou, K., “Relative decay index and source of polycyclic aromatic hydrocarbons” Atmospheric Environment, 20, p 39−45, 1986.
    Nisbet C., LaGcy, P., “Toxic Equivalency Factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs)” Reg Toxicol Pharmacol, 16, p 290-300, 1992.
    Poland, A.P., Glover, E., “Stereospecfic high affinity binding of 2,3,7, 8,-terachchlorodibenzo-p-dioxin by hepatic cytosol : Evidence that the bending species is the receptor for induction of aryl hydrocarbon hydroxylase” J. Bio. Chem., 251, pp4936-4945, 1976.
    Pyysalo, H., Tiominen, J., Wickstrom, K., Skytta, E., Tikkanen, L., Salomaa, S., Sorsa, M., Nurmela, T., Mattila, T., Pohkola, V., “Polycyclic organic matter (POM) in urban air: fractionation, chemical analysis and genotoxicity of particulate and vapor phase in an industrial town in Finland” Atmospheric Environment, 21, p 1167−1180, 1987.
    Ramdahll, R., Alfheim, I., Rustad, S., Olsen, T., “Chemical and biological characterization of emissions from small residential stoves burning wood and charcoal” Chemosphere, 11, p 601-611, 1982.
    Rasmussen, R.E., “Mutagenic activity of incense smoke on salmonella typhimurium” Bull Environ Contam Toxicol, 38, p 827-833, 1987.
    Roger, M.R., “The chemistry of solid wood” American Chemical Society, Washington, D.C., 1984.
    Rylander, R., Essle, N., Donham, K., “Bronchial Hyperreactivity among pig and dairy farmers” Am. J. Ind. Med., 17, p 66-69, 1990.
    Schoenotol, R., Gibbard, S., “Cancinogens in Chinese incense smoke” Nature, 216, p 612, 1967.
    Sekiguchi, Y., Shafizadeh, F., “Effect inorganic additives on the formation, composition, and combustion of cellulosic char” J. Appl. Polym. Sci., 29, p 1267-1286, 1984.
    Shafizadeh, F., Bradbury, A.G.W., William, F., Aanerud, T.W., “Role of inorganic additives in the smoldering combustion of cotton cellulose” Ind. Eng. Chem. Res., 21, p 97-101, 1982.
    Thakker, D.R., Yagi, H., Levin, W., Wood, A.W., Conney, A.H., Jerina, D.M., “Polycyclic aromatic hydrocarbons: metabolic activation to ultimate carcinogens. In Anders, M.W. (ed.) Bioactivation of Foreign Compounds” Academic Press, New York, p 177–242, 1985.
    Tuominen, J., Salomaa, S., Pyysalo, H., Skytta, E., Tikkanen, L., Nurmela, T., Sorsam M., Pohjola, V., Pohjola, M., Sauri, M., Himberg, K., ” Poly nucleararomatic compounds and genotoxicity in particulate and vapor Phases of ambient air : effect of traffic, season, and meteorological conditions” Environ. Sci. Technol., 22, p 1228-1234, 1988.
    Yeh, K., Song, Z., Reznichenko, J., Jang, K.O., “Alkali metal ions and their effects on smoldering and ignition of cotton upholstery fabrics - A literature review” Journal of Fire Sciences, 11, 4, p 350-354, 1993.
    Yang, S., Connel, D., Hawker, D., Kalyal, S., “Polycyclic aromatic hydrocarbons in air, soil and vegetation in vicinity of an urban roadway” Science of the Total Environment, 102, p 229−240, 1991.
    Zandere, M., “Physical and Chemical Properties of Polycyclic Aromatic Hydrocarbons” Marcel Dekker, Inc., 1985.
    方新發,空氣中多環芳香旂化合物的分析研究,清華大學原子科學所,碩士論文,1990。
    李建坤,拜香及蚊香燃燒產生之多環芳香烴化合物,國立台灣大學公共衛生學研究所,碩士論文,1996。
    李俊璋,空氣污染物致突變性測試方法改良之研究,台灣大學環境工程研究所,博士論文,1992。
    李慶鋒,垃圾焚化之多環芳香族碳氫化合物排放研究,國立台灣大學環境工程研究所,碩士論文,1991。
    李繡偉,拜香燃煙分佈動態變化與增溼成長特性,元智大學化學工程研究所,碩士論文,1998。
    林淵淙,餐廳廚房排放廢氣及周圍大氣中多環芳香烴化合物之特徵,成功大學環境工程系,碩士論文,碩士論文 2000
    林嘉明,拜香原料然煙中多環芳香化合物之探討,國科會計畫報告,1996。
    胡竹君,拜香之煙及灰中多環芳香烴化合物之分析,國立清華大學原子科學研究所,碩士論文,1992。
    高玫鍾、龍世俊,不同通風狀態室內燒香產生PM10濃度變化之研究,中華公共衛生雜誌,第十九卷,第三期, p 214-220, 2000。
    高玫鍾,龍世俊,香客在寺廟中懸浮微粒曝露濃度之探討,中華公共衛生雜誌,第十九卷,第二期, p 138-143, 2000。
    陳恭府,超低硫柴油摻配生質柴油之油品特性及污染排放分析,國立中山大學環境工程研究所,碩士論文,2004。
    游碧堉,化學物質遺傳毒性之簡易偵測法 1.沙門氏菌回復突變測試法,台灣省農業藥物毒性試驗所,1987。
    謝永昌,拜香氣膠中PAHs之粒徑分佈研究,成功大學環境工程系碩士論文,碩士論文 2002
    賴臆雯,大氣塵粒中多環芳香粒徑分佈特性之研究,國立清華大學原子科學研究所,碩士論文,2000。
    謝居憲,寺廟內部空氣中多環芳香化合物成分及特徵之研究,成功大學環境工程系,碩士論文,1996。
    羅培仁,雙叉桿菌對Benzo[a]pyrene之抗致突變性及機制,臺灣大學食品科技研究所,博士論文,2002。

    下載圖示 校內:2007-06-21公開
    校外:2007-06-21公開
    QR CODE