| 研究生: |
羅洪森 Lo, Hong-sen |
|---|---|
| 論文名稱: |
應用MEMS熱膜感測器與希爾伯特黃轉換分析脈動式管流之初始不穩定現象 Study The On-Set Disturbance in a Pulsating Pipe by MEMS sensor and Hilbert-Huang Transformation |
| 指導教授: |
苗君易
Miau, Jiun-Jih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 152 |
| 中文關鍵詞: | 希爾伯特黃轉換 、MEMS熱膜感測器 |
| 外文關鍵詞: | Hilbert-Huang Transformation, MEMS sensor |
| 相關次數: | 點閱:59 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用熱線測速儀與實驗室自製之MEMS熱膜感測器,量測脈動式非定常管流流場之層紊流轉換現象。控制此脈動式非定常管流場之平均雷諾數、雷諾數振幅於Womersley Number,並利用希爾伯特黃轉換可以拆解複合訊號與將訊號-時間轉換為頻率-時間-強度知三維特性之優點,並利用ensamble average的方式,將長時間所量得的大量數據平均,以得到一個流場速度變化循環內,流場平均現象,研究此流場發生初始不穩定擾動時,此不穩定擾動現象之頻率特性。
於本研究之實驗結果中發現,當womerslry介於28.6至40.4之間、平均雷諾數介於10000至18000、雷諾數振幅介於2600至5100時,此脈動式管流場之層紊流轉換皆會在流場速度最低處產生一回流現象,然後產生一誘發的二次渦流,出現在流場加速區段,並隨著流場加速向下游傳遞,此渦流產生之不穩定擾動多在30-50Hz之間,以之與穩態流場邊界層之不穩定擾動頻率做比較,其擾動對應之無因次參數約在damping與amplified 範圍之間,且隨著流場向下游傳遞,此不穩定擾動也隨之放大。
This study employed the hotwire anometer and self-made MEMS hot-film sensors to measure the laminar-turbulent transition in a pulsating pipe flow. In this study, the parameters are the mean Reynolds Numbers, amplitude of Reynolds Numbers and Womersley Numbers. In order to decompose the raw data, Hilbert-Huang Transition analysis method were used to get the frequency-amplitude-time characteristic. Also apply the ensamble average method to obtain the mean frequency characteristic of the laminar-turbulent transition in a pulsating pipe flow.
As the mean Reynolds Numbers from 10000 to 180000, amplitude of Reynolds Numbers from 2600 to 5100 and Womersley Numbers from 28.6 to 40.4, the results of this study show that the back-flow appeared at lowest velocity phase. Then the secondary vortices will be induced by the back-flow. Secondary vortices will convect downstream and grow in size. The frequency characteristic is between 30 to 50 Hz. Compared with steady boundary layer laminar-turbulent transition instability diagram, the disturbances frequency is close to the neutral stability curve.
[1] Akhzvan, R., Kammz, R. D., Shapiro, A. H., “An investigation of transition to turbulence inbounded oscillatory Stokes flows Part 1. Experiments”, J. Fluid Mech., vol. 225, pp. 395-422, 1991.
[2] Bandyopadhyay, P. R., “Aspects of the equilibrium puff in transitional pipe flow”, J. Fluid Mech., vol. 163, pp. 439-458, 1986.
[3] Blennerhassett, P. J., Bassom, A. P., “The linear stability of flat Stokes layers”, J. Fluid Mech., vol. 464, pp. 393-410, 2002.
[4] Blennerhassett, P. J., Bassom, A. P., “The linear stability of high-frequency oscillatory flow in a channel”, J. Fluid Mech., vol. 556, pp. 1–25, 2006.
[5] Blondeaux, P., Vittori, G., “Wall imperfections as a triggering mechanism for Stokes-layer transition”, J. Fluid Mech., vol. 264, pp. 107-135, 1994.
[6] Cantwell, B., Coles, D., Dimotakis, P., “Structure and Entrainment in the Plane of Symmetry of a turbulent spot”, J. Fluid Mech., vol. 87, pp. 641-672, 1978.
[7] Çarpinlioğlu, M., Gűndoğdu, M., “A critical review on pulsatile pipe flow studies directing towards future research topics”, Flow Measurement and Instrumentation, vol. 12, pp. 163-174, 2001.
[8] Das, D., Arakeri, J. H., “Transition of unsteady velocity profiles with reverse flow”, J. Fluid Mech., vol. 374, pp. 251-283, 1998.
[9] Draad, A. A., Kuiken, G. D. C., Nieuwstadt, F. T. M., “Laminar-turbulent transition in pipe flow for Newtonian and non-Newtonian fluids” , J. Fluid Mech., vol. 377, pp. 267-312, 1998.
[10] Davis, S. H., “THE STABILITY OF TIME-PERIODIC FLOWS” , Fluid Mech., vol. 8, pp. 57-74, 1976.
[11] Durst, F., Ünsal, B., “Forced laminar-to-turbulent transition of pipe flows” , J. Fluid Mech., vol. 560, pp. 449–464, 2006.
[12] Eckmann, D. M., Grotberg, J. B., “Experiments on transition to turbulence in oscillatory pipe flow”, J. Fluid Mech., vol. 222, pp. 329-350, 1991.
[13] Eggels, J. G. M., Unger, F., Weiss, M. H., Westerwee, J., Adrian, R. J., Friedrich, R., Nieuwsradt, F. T. M., “Fully developed turbulent pipe flow: a comparison between direct numerical simulation and experiment”, J. Fluid Mech., vol. 268, pp. 175-209, 1994.
[14] Emmons, H. W., “The laminar-turbulent transition in a boundary layer-part 1” , Journal of the Aeronautical Sciences, vol. 18, no. 7, pp. 490-498, 1951.
[15] Fishler, L. S., Brodkey, R. S., ”Transition, turbulence and oscillating flow in a pipe” , Experiments in Fluids, vol. 11, pp. 388-398, 1991.
[16] Hassan, H. A., “On unsteady laminar boundary layers”, J. Fluid Mech., vol. 9, pp. 300-304, 1961.
[17] Hino, M., Sawamoto, M., Takasu, S., “Experiments on transition to turbulence in an oscillatory pipe flow”, J. Fluid Mech., vol. 75, part 2, pp. 193-207, 1976.
[18] Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N. C., Tung, C. C., and Liu, H. H., “The Empirical Mode Decomposition and the Hilbert Spectrum of Nonlinear and Non-Stationary Time Series Analysis,” Proc. R. Soc. Lond., vol. A454, pp. 903-995, 1998.
[19] Iguchi, M., Park, G. M., Koh, Y. H., ” The Structure of Turbulence in Pulsatile Pipe Flows” , KSME Journal, vol. 7, no. 3, pp. 185-193, 1998.
[20] Iguchi, M., Ohmi, M., Fujii, Y., “Behavior of turbulent slugs in a transient pipe flow” JSME International Journal, vol. 32, no. 3, pp. 340-347, 1989.
[21] Iguchi, M., Urahata, I., Ohmi, M., “Turbulent Slug and Velocity Field in the Inlet Region for Pulsatile Pipe Flow”, JSME International Journal, vol. 30, no. 261, pp. 414-422, 1987.
[22] Karlsson, S. K. F., “An unsteady turbulent boundary layer” , J. Fluid Mech., vol. 5, part 4, pp. 622-636, 1959.
[23] Kerczek, C. V., Davis, S. H., “Linear stability theory of oscillatory Stokes layers”, J. Fhid Mech., vol. 62, part 4, pp. 753-773, 1974.
[24] Klebanoff, P. S., Tidstrom, K. D., Sargent, L. M., “The Three-Dimensional Nature of Boundary Layer Instability,” J. Fluid. Mech., vol. 12, pp. 1-24, 1962.
[25] Lodahl, C. R., Sumer, B. M., Fredsøe, J., “Turbulent combined oscillatory flow and current in a pipe”, J. Fluid Mech., vol. 373, pp. 313-348, 1998.
[26] Miller, J. A., Fejer, A. A., “Transition phenomena in oscillating boundary-layer flows”, Journal Fluid Mech., vol. 18, part 3, pp.438-484, 1964.
[27] Nakahata, Y., Wada, I., Nishihara, K., Iguchi, M., “Critical Reynolds Number in Constant-Acceleration Square Duct Flow”, 2nd International Symposium on Advanced Fluid/Solid Science and Technology in Experimental Mechanics, pp. 23-25, 2007.
[28] Nerem, R. M., Seed, W. A., “An in vivo study of aortic flow Disturbances”, Cardiovascular Research , vol. 6, pp. 1-14, 1972.
[29] Obremski, H. J., Fejer, A. A., “Transition in oscillating boundary layer flows”, J. Fluid Mech.. vol. 29, part 1, pp. 93-111, 1967.
[30] Ohmi, M., Usui, T., Fukawa, M., Hirasaki, S., “Pressure and Velocity Distributions in Pulsating Laminar Pipe Flow”, JSME Journal, vol. 19, no. 129, pp. 298-306, 1976.
[31] Peacock, J., Jones, T., Tock, C., Lutz, R., “The onset of turbulence in physiological pulsatile flow in a straight tube”, Experiments in Fluids, vol. 24, pp. 1-9, 1998.
[32] Reshotko, E., “Transition Reversal and Tollmien-Schlichting Instability”, phys. Fluids, vol. 6, no. 3, pp. 336-342, 1963.
[33] Reynolds, O., “An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels”, Philosophical Transactions of the Royal Society, vol. 174, pp. 935-982, 1883.
[34] Salon, S., Armenio, V., Crise, A., “A numerical investigation of the Stokes boundary layer in the turbulent regime”, J. Fluid Mech., vol. 570, pp. 253-296, 2007.
[35] Saric, W. S., Thomas, A. S. W., “Experiments on the Subharmonic Route to Turbulence in Boundary Layers,” Turbulence and Chaotic Phenomena in Fluids, pp. 117-122, 1984.
[36] Schlichting, H., “Zur Entstehung derturbulenz bei der Plattenströmung”, Nachr. Ges. Wiss. Göttigen, Math. Phys. Klasse, pp. 182-208, 1933.
[37] Schlichting, H., “Amplitudenverteilung und Enetgiebilanz der kleinen Störungen bei der Plattenströmung”, Nachr. Ges. Wiss. Göttigen, Math. Phys. Klasse, pp. 47-78, 1935.
[38] Schemer, L., “Laminar-turbulent transition in a slowly pulsating pipe flow” , phys. Fluids, vol. 28, no. 12, pp. 3506-3509, 1985.
[39] Schemer, L., Wygnanski, I., Kit, E., “Pulsating flow in a pipe” , J . Fluid Mech., vol. 153, pp. 313-337, 1985.
[40] Schubauer, G. B., Skramstad, H. K., “Laminar boundary layer oscillations and stability of laminar flow”, Journal of the Aeronautical Sciences, vol. 14, pp. 68-78, 1947.
[41] Stettler, J. C., Hussain, A. K. M. F., “On transition of the pulsatile pipe flow”, J. Fluid Mech., vol. 170, pp. 169-197, 1986.
[42] Tollmien, W., “Über die Entstehung der Turbulenz”, Mitteilung, Nachr. Ges. Wiss. Göttigen, Math. Phys. Klasse, pp. 21-44, 1929.
[43] Tollmien, W., “Ein allgemeines Kriterium der Instabilität laminarer Geschwindigkeitsverteilungen”, Nachr. Ges. Wiss. Göttigen, Math. Phys. Klasse, pp. 79-114, 1935.
[44] Tu, J. K., “Investigation of Unsteady, Three-Dimensional Characteristics of the Vortex Shedding behind Bluff Bodies at Sub-Critical Reynolds Numbers“, Ph. D. Thesis, National Cheng Kung University, R.O.C, 2007.
[45] Tuzi, R., Blondeaux, P., “Intermittent turbulence in a pulsating pipe flow”, J. Fluid Mech., vol. 599, pp. 51–79, 2008.
[46] Vittori, G., Verzicco, R., “Direct simulation of transition in an oscillatory boundary layer”, J. Fluid Mech., vol. 371, pp. 207-232, 1998.
[47] White, F. M., “Viscous Fluid Flow”, McGraw-Hill International Edition, Third Edition, 2006.
[48] Womersley, J. R., “Method for the calculation of velocity rate of flow and viscous drag in arteries when the pressure gradient is know”, J. Physiol., pp. 553-563, 1955.
[49] Wygnanski, I. J., Champagne, F. H., “On transition in a pipe Part 1. The origin of puffs and slugs and the flow in a turbulent slug”, J. Fluid Mech., vol. 59, part 2, pp. 281-335, 1973.
[50] Wygnanski, I. J., Sokolov, M., D. Friedman, “On transition in a pipe Part 2. the equlibrium puff” , J. Fluid Mech., vol. 69, part 2, pp. 283-304, 1975.
[51] Wygnanski, I. J., Sokolov, M., Friedman, D., “On a Turbulent Spot in a Laminar Boundary Layer,” J. Fluid Mech., vol. 78, part 4, pp. 785-819, 1976.
[52] Zielke, W., “Frequency dependent friction in transient pipe flow”, Ph. D. Thesis, Michigan Industry Program of the College of Engineering, 1966.