簡易檢索 / 詳目顯示

研究生: 郭威廷
Guo, Wei-Ting
論文名稱: 噴覆成型高矽量Al-Si-Cu-Mg-Ni及Al-Si-Zn-Fe-Mg合金之高溫機械性質與磨耗性質探討
Study of Elevated Temperature Mechanical Properties and Wear Properties of High Si-Containing Al-Si-Cu-Mg-Ni and Al-Si-Zn-Fe-Mg Alloys Synthesized by Spray Forming Process.
指導教授: 曹紀元
Tsao, Chi-Yuan
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 119
中文關鍵詞: 鋁矽合金噴覆成型背向式擠型高溫機械性質磨耗性質
外文關鍵詞: Al-Si alloys, Spray-formed, Backward extrusion, Thermomechanical properties, Wear properties
相關次數: 點閱:162下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 機車引擎工作溫度約在150~250℃,且活塞與汽缸套之間劇烈地往復運動作用,其主要與汽缸套對磨的為活塞上之活塞環,活塞環須密封燃燒室內的可燃混合氣體以及刮除汽缸上多餘的機油,且活塞環材質通常為較硬之鋼材或球墨鑄鐵,因此汽缸套材料需有較好之高溫熱機性質及耐磨耗性質。
    一般鋁合金的耐磨耗性、高溫強度、熱膨脹係數等性質上不具有特殊優勢。但若在鋁合金中加入高量之矽元素,則可同時大幅改善以上問題。在傳統製程中,過共晶Al-Si 合金會有粗大初晶矽,造成其延展性下降,難以進行後續加工與成型。本研究即針對超高矽鋁合金進行開發,主要利用合金設計與先進之「噴覆成型」製程製作出具有等軸細小初晶矽的高矽鋁合金。
    本研究利用背向式擠型加工噴覆成型之高矽鋁合金,並探討不同擠型溫度、應變速率下對於材料顯微組織之影響、高溫機械性質、磨耗性質,並從晶粒、矽顆粒、其他析出相進行分析,藉由高溫拉伸試驗及磨耗試驗之結果,建立資料庫提供開發機車引擎汽缸套之參考。

    In this study, high Si-containing aluminum alloys synthesized by spray-formed are extruded. The author study the effects of different extrusion parameters on the microstructure, tensile properties and wear properties at elevated temperature. Establishing a database to develop cylinder liner for motorcycle engine with the results of tensile test and wear test at elevated temperature.
    Thermo-calc analysis is similar with microstructure of AC9A-30Si and AZFM-30Si synthesized by spray forming. Different extrusion parameters will influence microstructure of AC9A-30Si, AZFM-30Si.
    AC9A-30Si extruded at 500℃,0.1s-1 have highest peak stress, yield stress but lowest elongation. AZFM-30Si extruded at 500℃,0.1s-1 and etched have better wear resistance.

    中文摘要 I 英文延伸摘要 II 誌謝 VII 目錄 VIII 表目錄 XI 圖目錄 XII 第一章 序論 1 1-1 前言 1 1-2 研究目標 2 第二章、文獻回顧與理論基礎 3 2-1 鋁矽合金 3 2-2 噴覆成型製程 6 2-3 金屬基複合材 7 2-3-1 金屬基複合材的強化機制 7 2-3-2 金屬基複合材的變形機制 8 2-3-3 金屬基複合材的破壞機構 10 2-4 背向式擠型 11 2-5 磨耗行為 12 2-5-1 磨耗機制 12 2-5-2 鋁矽合金的乾式滑移磨耗行為 13 2-5-3 潤滑機制 15 2-5-4 表面粗糙度 15 2-5-5 摩擦層(或機械混合層) 17 第三章、實驗方法及步驟 18 3-1 噴覆成型過共晶鋁矽合金 18 3-2 成份分析與相鑑定分析 18 3-3 背向式擠型加工 18 3-4 硬度試驗 19 3-5 高溫拉伸試驗 19 3-6 磨耗試驗 20 3-7 顯微組織與表面形貌分析 21 3-8 其他分析 22 第四章、結果與討論 23 4-1 噴覆成型材料及其顯微組織 23 4-1-1 Thermo-Calc 軟體模擬 23 4-1-2 噴覆成型材料之顯微組織 24 4-2 背向式擠型加工及其顯微組織 26 4-2-1 AC9A-30Si 擠型材之顯微組織 26 4-2-2 AZFM-30Si擠型材之顯微組織 29 4-2-3 AC9A-30Si與AZFM-30Si擠型材之顯微組織比較 30 4-3 高溫機械性質分析 31 4-3-1 擠型參數對AC9A-30Si高溫機械性質之影響 31 4-3-2 AC9A-30Si高溫拉伸之破斷面分析 35 4-3-3 不同合金系統對高溫機械性質之影響 36 4-4 磨耗試驗 37 4-4-1 磨耗試驗前之鋁矽合金表面形貌 37 4-4-2 AC9A-30Si磨耗性質探討 38 4-4-3 AZFM-30Si磨耗性質探討 40 4-4-4 不同合金系統對磨耗性質之影響 41 4-4-5 接觸電阻與摩擦係數 43 第五章、結論 46 參考文獻 51

    1. YUE WU, W.A.C., and ENRIQUE J. LAVERNIA, Microstructure and Mechanical Properties of Spray-Deposited Al-17Si-4.5Cu-0.6Mg Wrought Alloy. METALLURGICAL AND MATERIALS TRANSACTIONS A, 1995.
    2. Raju, K., S.N. Ojha, and A.P. Harsha, Spray forming of aluminum alloys and its composites: an overview. Journal of Materials Science, 2008. 43(8): p. 2509-2521.
    3. Dey, S., <ELEVATED TEMPERATURE LUBRICATED WEAR OF Al-Si ALLOYS>. 2012.
    4. Slattery, B.E., A. Edrisy, and T. Perry, Investigation of wear induced surface and subsurface deformation in a linerless Al–Si engine. Wear, 2010. 269(3-4): p. 298-309.
    5. Yang, Y., et al., Evolution of nickel-rich phases in Al–Si–Cu–Ni–Mg piston alloys with different Cu additions. Materials & Design, 2012. 33: p. 220-225.
    6. Moffat, A., et al., The effect of silicon content on long crack fatigue behaviour of aluminium–silicon piston alloys at elevated temperature. International Journal of Fatigue, 2005. 27(10-12): p. 1564-1570.
    7. Mohamed, A.M.A., F.H. Samuel, and S.A. kahtani, Microstructure, tensile properties and fracture behavior of high temperature Al–Si–Mg–Cu cast alloys. Materials Science and Engineering: A, 2013. 577: p. 64-72.
    8. Hou, L.G., et al., Extrusion, Properties, and Failure of Spray-Formed Hypereutectic Al-Si Alloys Based on the Optimization of Fe-Bearing Phase. Metallurgical and Materials Transactions A, 2012. 44(4): p. 1814-1826.
    9. 蘇彥豪, <汽車引擎用噴覆成型高矽鋁合金汽缸套之開發>. 2004.
    10. Shabestari, S.G. and R. Gholizadeh, Assessment of intermetallic compound formation during solidification of Al–Si piston alloys through thermal analysis technique. Materials Science and Technology, 2012. 28(2): p. 156-164.
    11. Goudar, D.M., et al., Effect of copper and iron on the wear properties of spray formed Al–28Si alloy. Materials & Design, 2013. 51: p. 383-390.
    12. J. Zhou, J.D., B. M. Korevaar, <Microstructural features and final mechanical properties of the iron-modified Al-20Si-3Cu-1Mg alloy product processed from atomized powder.pdf>. 1991.
    13. Farkoosh, A.R., et al., Phase formation in as-solidified and heat-treated Al–Si–Cu–Mg–Ni alloys: Thermodynamic assessment and experimental investigation for alloy design. Journal of Alloys and Compounds, 2013. 551: p. 596-606.
    14. Jeong, C.-Y., High Temperature Mechanical Properties of Al-Si-Mg-(Cu) Alloys for Automotive Cylinder Heads. Materials Transactions, 2013: p. 588-594.
    15. B Yang, F.W., J. S Zhang, B. Q Xiong, X. J Duan, <The effect of Mn on the microstructure of spray-deposited Al–20Si–5Fe–3Cu–1Mg alloy>. 2001.
    16. Cai, Y., et al., Effect of Cr and Mn on the microstructure of spray-formed Al–25Si–5Fe–3Cu alloy. Materials Science and Engineering: A, 2011. 528(12): p. 4248-4254.
    17. Feng, W., et al., Microstructure, Mechanical Properties, and Age-Hardening Behavior of an Al-Si-Fe-Mn-Cu-Mg Alloy Produced by Spray Deposition. Journal of Materials Engineering and Performance, 2010. 20(1): p. 155-159.
    18. Farkoosh, A.R. and M. Pekguleryuz, The effects of manganese on the Τ-phase and creep resistance in Al–Si–Cu–Mg–Ni alloys. Materials Science and Engineering: A, 2013. 582: p. 248-256.
    19. Tebib, M., et al., Solidification and Microstructural Evolution of Hypereutectic Al-15Si-4Cu-Mg Alloys with High Magnesium Contents. Metallurgical and Materials Transactions A, 2013. 44(9): p. 4282-4295.
    20. Gomes, R.M., et al., Precipitation Strengthening and Mechanical Properties of Hypereutectic P/M Al-Si-Cu-Mg Alloys Containing Fe and Ni. Materials Science Forum, 1996. 217-222: p. 789-794.
    21. Li, Y., et al., Quantitative comparison of three Ni-containing phases to the elevated-temperature properties of Al–Si piston alloys. Materials Science and Engineering: A, 2010. 527(26): p. 7132-7137.
    22. Bai, P., et al., Microstructure and mechanical properties of a large billet of spray formed Al–Zn–Mg–Cu alloy with high Zn content. Materials Science and Engineering: A, 2009. 508(1-2): p. 23-27.
    23. Cui, C., et al., Spray forming of hypereutectic Al–Si alloys. Journal of Materials Processing Technology, 2009. 209(11): p. 5220-5228.
    24. McQueen, H.J., et al., <Hot Deformation and Processing of Aluminum Alloys Chapter7 Aluminum Matrix Composites>. 2011.
    25. MILLER, W.S. and F.J. HUMPHREYS, <STRENGTHENING MECHANISMS IN PARTICULATE METAL MATRIX COMPOSITES>. Scripta METALLURGICA et MATERIALIA 1991. 25: p. 33-38.
    26. Nairn, J.A., <On the Use of Shear-Lag Methods for Analysis of Stress Transfer in Unidirectional Composites>. MECHANICS OF MATERIALS, 1997: p. 63-80.
    27. S.F.CORBIN and D.S. WILKINSON, <LOW STRAIN PLASTICITY IN A PARTICULATE METAL MATRIX COMPOSITE>. Acta Mater, 1994. 42: p. 1319-1327.
    28. D.J.LLOYD, Aspects of fracture in particulate reinforced metal matrix composites. Acta Mater, 1991. 39: p. 59-71.
    29. Courtney, T.H., Mechanical Behavior of Materials: Second Edition. 2005: Waveland Press.
    30. McQueen, H.J., Substructural influence in the hot rolling of Al alloys. JOM, 1998. 50(6): p. 28-33.
    31. 陳奕琦, <等徑轉角擠製溫度對鋁鎂合金為結構發展的影響>. 2002.
    32. 周詩博, <冷軋鋁箔之再結晶組織與機械性質>. 2002.
    33. 杨栋, et al., <7075 铝合金热变形时动态再结晶晶粒度演化模型>. The Chinese Journal of Nonferrous Metals 2013. 23.
    34. McQueen, H.J., et al., <Microstructural evolution in Al deformed to strains of 60 at 400°C>. 1985. 19(1): p. 73-78.
    35. RAVICHANDRAN, N. and Y.V.R.K. PRASAD, <Dynamic Recrystallization during Hot Deformation of Aluminum A study using processing maps.pdf>. METALLURGICAL TRANSACTIONS A, 1991.
    36. M.KOUZELI, et al., <Influence of damage on the tensile behaviour of pure aluminium reinforced with ≥40 vol. pct alumina particles.pdf>. Acta Mater, 2001: p. 3699-3709.
    37. M.J.HADIANFARD, J.HEALY, and Y.W.MAI, <Fracture characteristics of a particulate-reinforced metal matrix composite.pdf>. JOURNAL OF MATERIALS SCIENCE, 1994: p. 2321-2327.
    38. Peris, R.G., <Effects of extrusion conditions on ”Die Pick-Up” formed during extrusion of aluminium alloy AA6060.pdf>. 2007.
    39. Bhushan, B., Modern tribology handbook, two volume set. 2000: CRC press.
    40. Kato, K., Classification of Wear Mechanisms/Models, in Wear – Materials, Mechanisms and Practice. 2005, John Wiley & Sons Ltd. p. 9-20.
    41. J.D.Gates, <Two-body and three-body abrasion- A critical discussion>. Wear, 1998: p. 139-146.
    42. R.ANTONIOU and C.SUBRAMANIAN, <Wear mechanism map for aluminium alloys>. Scripta METALLURGICA 1988. 22: p. 809-814.
    43. LIU, Y., R. ASTHANA, and P. ROHATGI, <A map for wear mechanisms in aluminium alloys>. Journal of MATERIALS SCIENCE, 1991: p. 99-102.
    44. SUH, N.P., <The delamination theory of wear>. Wear, 1973: p. 111-124.
    45. J.ZHANG and A.T.ALPAS, <Transition between mild and severe wear in aluminium alloys>. Acta Mater, 1997. 45: p. 513-528.
    46. CLARKE, J. and A.D.SARKAR, <Wear characteristics of as-cast binary aluminium-silicon alloys>. Wear, 1979: p. 7-16.
    47. H.Torabian, J.P.Pathak, and S.N.Tiwari, <Wear characteristics of Al-Si alloys>. Wear, 1994: p. 49-58.
    48. Wang, F., et al., Effect of Si content on the dry sliding wear properties of spray-deposited Al–Si alloy. Materials & Design, 2004. 25(2): p. 163-166.
    49. Elmadagli, M., T. Perry, and A.T. Alpas, A parametric study of the relationship between microstructure and wear resistance of Al–Si alloys. Wear, 2007. 262(1-2): p. 79-92.
    50. Payne, M.J., et al., Tribological performance of an Al–Si alloy lubricated in the boundary regime with zinc dialkyldithiophosphate and molybdenum dithiocarbamate additives. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2008. 222(3): p. 305-314.
    51. 陳亮嘉, 表面粗度量測原理與技術. 2012.
    52. R.L.Deuis, C.SUBRAMANIAN, and J.M.Yellup, <DRY SLIDING WEAR OF ALUMINIUM COMPOSITES-A REVIEW>. Composites Science and Technology, 1997. 57(4): p. 415-435.
    53. Riahi, A.R. and A.T.ALPAS, The role of tribo-layers on the sliding wear behavior of graphitic aluminum matrix composites. Wear, 2001. 251(1-12): p. 1396-1407.
    54. 蘇怡達, <噴覆成型製作之超高矽過共晶鋁矽合金的塑性加工性及其機械性質之探討>. 2014.
    55. 陳俊銘, <噴覆成型高矽量Al-Si-Zn-Fe-Mg合金的塑性加工性及高溫機械性質探討>. 2016.
    56. Warmuzek, M., Chemical composition of the Ni-containing intermetallic phases in the multicomponent Al alloys. Journal of Alloys and Compounds, 2014. 604: p. 245-252.
    57. Hou, L.G., C. Cui, and J.S. Zhang, Optimizing microstructures of hypereutectic Al–Si alloys with high Fe content via spray forming technique. Materials Science and Engineering: A, 2010. 527(23): p. 6400-6412.
    58. Lloyd, D.J., Particle reinforced aluminium and magnesium matrix composites. International Materials Reviews, 1994. 39(1): p. 1-23.
    59. Tsuji, N., et al., <Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing>. Scripta Materialia, 2002: p. 893-899.
    60. Franz Ruckert, O.P. and S.R.R. Stocker, Weinstadt, all of Germany, <Cylinder liner of a hypereutectic aluminumsilicon alloy for casting into a crankcase of a reciprocating piston engine and process for producing such a cylinder liner>. 1999.
    61. Franz Ruckert, O.P. and S.R.R. Stocker, Weinstadt, all of Germany, <Cylinder liner of a hypereutectic aluminumsilicon alloy for use in a crankcase of a reciprocating piston engine and process for producing such a cylinder liner.pdf>. 2000.
    62. Prasad, S.V. and R. Asthana, <Aluminum Metal Matrix Composites for Automotive Applications Tribological Considerations>. Tribology Letters 2004. 17(3): p. 445-453.
    63. Riahi, A.R., T. Perry, and A.T. Alpas, Scuffing resistances of Al–Si alloys effects of etching condition, surface roughness and particle morphology. Materials Science and Engineering: A, 2003: p. 76-81.
    64. 四行程引擎的作動. Available from: http://163.27.127.130/office16/%E6%A9%9F%E8%B8%8F%E8%BB%8A%E8%B3%87%E6%96%99/%E5%BC%95%E6%93%8E%E7%AF%87/%E5%9B%9B%E8%A1%8C%E7%A8%8B%E5%BC%95%E6%93%8E%E7%9A%84%E4%BD%9C%E5%8B%95.htm.
    65. 江俊憲, <高矽含量噴覆成型過共晶鋁矽合金之固態成形性與半固態製程研究>. 2005.
    66. seimitsu, A.t., Definition of Surface texture and Stylus instrument.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE