簡易檢索 / 詳目顯示

研究生: 顏廷宇
Yen, Ting-Yu
論文名稱: 整合非線性光學與人工智能以揭示半導體與二維材料的特性
Integrating Nonlinear Optical Methods and AI to Unveil Semiconductor and 2D Material Properties
指導教授: 羅光耀
Lo, Kuang-Yao
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 109
中文關鍵詞: 二次諧波產生(SHG)時間相關二次諧波產生(TD-SHG)摻雜矽超薄膜電荷捕獲多光子吸收界面陷阱密度 (Dit)非破壞性光學量測物理信息神經網絡(PINN)競爭性吸附簡化鍵超極化率模型(SBHM)二維材料氣體感測器密度泛函理論計算
外文關鍵詞: Second harmonic generation (SHG), Time-dependent second harmonic generation (TD-SHG), Doped Si ultrathin film, Charge trapping, Multiphoton absorption, Interface trap density, Non-destructive optical measurement, Physics-informed neural network (PINN), Competitive adsorption, Simplified bond hyperpolarizability model (SBHM), 2D material gas sensor, DFT calculation
相關次數: 點閱:22下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 非破壞性摻雜濃度表徵對於半導體製程控制至關重要。本研究利用時間相關二次諧波產生(TD-SHG)技術來評估厚度約 10 nm 的矽超薄膜中的摻雜濃度。透過分析內部光電發射誘導的電荷捕獲以及相應的電場調制,我們建立了一個模型,結合了費米-狄拉克分布與穿隧機率,能夠在不考慮晶體結構的前提下,準確確定 1017 to 1020 atoms/cm³ 範圍內的摻雜濃度。相較於傳統的電性量測與二次離子質譜(SIMS)分析,TD-SHG 提供了一種非破壞性、高效率且適用於在線檢測的替代方案,適用於半導體製造過程中的摻雜監測。
    此外,我們進一步探討硼摻雜與環境條件對電場動態的影響。研究發現氧分子會透過奪取表面態電子來降低 SHG 強度,從而影響測得的電場。通過在受控壓力條件下進行實驗,我們成功減少了氧氣影響,使摻雜效應得以獨立呈現。實驗結果顯示,硼誘導的電場與摻雜濃度之間具有穩定的單調關係,並與第一性原理計算和電容-電壓(C-V)測量結果高度一致。此外,雷射功率與時間常數的相關性進一步驗證了多光子吸收機制,增強了 TD-SHG 作為摻雜半導體材料表徵技術的靈敏度。
    我們還展示了 SHG 在提取界面陷阱密度(Dit)方面的能力,通過引入物理信息神經網絡(PINN)與轉移學習,大幅降低了計算時間,同時保持高準確性。相比於傳統基因演算法需要約 30 分鐘處理每組數據,PINN 技術能夠將計算時間縮短至 10 秒以內,使得 Dit 的即時評估成為可能,提供了一種高效且非破壞性的半導體界面表徵方法,進一步提升元件製造過程的優化能力。
    除了半導體應用外,SHG 亦被用於研究二硫化鎢(WS2)表面氣體吸附行為,揭示氧氣、氨氣與水蒸氣之間的競爭相互作用。結果表明,氣體吸附行為符合朗繆爾吸附模型與波茲曼分布,證實了物理吸附特性。此外,利用 SHG 及簡化鍵超極化率模型(SBHM),我們為研究氣體吸附及其對二維材料電子特性的影響奠定了基礎。進一步透過密度泛函理論計算分析不同氣體間的競爭行為,提供對氣體感測機制與表面相互作用的深入理解。這些研究結果顯示,SHG 作為一種多功能表徵技術,不僅適用於半導體與表面界面研究,亦可為在線監測、材料研究與氣體感測應用開闢新途徑。

    Non-destructive characterization of dopant concentration is essential for process control in semiconductor fabrication. In this study, we utilize time-dependent second harmonic generation (TD-SHG) to evaluate dopant concentration in silicon ultrathin films with thicknesses around 10 nm. By analyzing the evolution of internal photoemission-induced charge trapping and the associated electric field modulation, we develop a model incorporating Fermi-Dirac distribution and tunneling probability. This enables the precise determination of dopant concentrations ranging from 1017 to 1020 atoms/cm³ without requiring crystallinity assumptions. Compared to conventional electrical and SIMS measurements, TD-SHG offers a non-destructive, efficient, and in-line alternative for dopant monitoring in semiconductor fabrication.
    Furthermore, we investigate the role of boron doping and environmental conditions on electric field dynamics. Oxygen molecules are found to reduce SHG intensity by depleting electrons from surface states, thereby affecting the measured field. By conducting experiments under controlled pressure conditions, we mitigate the influence of oxygen and isolate dopant-related effects. A robust monotonic correlation between boron-induced electric fields and dopant concentration is observed, aligning well with first-principles calculations and capacitance-voltage measurements. The laser power dependence of time constants further validates the multiphoton absorption mechanism, reinforcing TD-SHG’s capability as a sensitive characterization tool for doped semiconductor materials.
    Additionally, we demonstrate SHG’s capability in extracting interface trap density (Dit) by employing a physics-informed neural network (PINN) with transfer learning, significantly reducing computational time while maintaining accuracy. This method provides a non-invasive and efficient approach for semiconductor interface characterization, enhancing process optimization in device fabrication. The genetic algorithm approaches required approximately 30 minutes per dataset, whereas PINN reduces this to under 10 seconds, making real-time Dit evaluation feasible.
    Beyond semiconductor applications, SHG is employed to examine gas adsorption on WS2, revealing competitive interactions between oxygen, ammonia, and water vapor. The findings align with Langmuir adsorption and Boltzmann distribution models, confirming physical adsorption behavior. By leveraging SHG and the simplified bond hyperpolarizability model, we establish a foundation for studying gas adsorption and its impact on electronic properties in 2D materials. The competition between different gases is further analyzed using density functional theory calculations, providing insights into gas-sensing mechanisms and surface interactions. These results underscore SHG as a versatile tool for both semiconductor and surface interface characterization, paving the way for advanced in-line monitoring, material research, and gas sensing applications.

    摘要 II Abstract IV Acknowledgement VI Contents VII Figure List X Table List XIV Chapter 1 Introduction 1 1.1 Challenges in advanced field-effect transistor fabrication and the role of Second harmonic generation-based characterization 1 1.2 SHG-based approach for gas sensing in 2D van der Waals materials 2 Chapter 2 Second Harmonic Generation 5 2.1 Second harmonic generation (SHG) 5 2.1.1 Second-order susceptibility tensor 5 2.1.2 Multipolar responses 6 2.2 Simplified bond hyperpolarizability model (SBHM) 7 2.3 Electric field induced SHG (EFISHG) 10 2.3.1 Charge trapping and multiphoton absorption 10 2.3.2 Time-dependent SHG (TD-SHG) 11 Chapter 3 The Experiment setup 14 3.1 SHG system 14 3.2 SHG system integrated with vacuum system 15 Chapter 4 Exploring dopant-induced nonlinear optical properties in Si ultrathin films 17 4.1 Introduction 17 4.2 Correlation of time-dependent nonlinear response with phosphorus concentration in Si ultrathin film 18 4.2.1 Material and methods 18 4.2.2 EFISHG and internal photoemission 20 4.2.3 Fermi-Dirac distribution and tunneling probability 21 4.2.4 Results and discussion 23 4.2.4 Summary 31 4.3 Unveiling dopant concentration in boron doped Si ultrathin film: Enhanced analysis using time-dependent second harmonic generation 32 4.3.1 Material and methods 33 4.3.2 Theory 34 4.3.3 Results and discussion 38 4.3.4 Summary 46 Chapter 5 Real-Time and Non-Destructive Detection of Interface Trap Density Using Second Harmonic Generation with Physics-informed neural network 48 5.1 Introduction 48 5.2 Material and methods 49 5.3 Theory 51 5.4 Results and discussion 53 5.5 Summary 61 Chapter 6 Gas Adsorption Mechanism on 2D Materials: The Hyperpolarizability Evolution Analyzed by Nonlinear Optics 62 6.1 Introduction 62 6.2 Material and methods 63 6.3 Theory 64 6.3.1 SBHM of WS2 for gas adsorption 65 6.3.2 Single-Site Langmuir adsorption 66 6.3.3 DFT calculation 68 6.4 Results and discussion 71 6.4.1 Changes in SHG due to gas adsorption 71 6.4.2 The Competition between Oxygen, Ammonia and Water Molecules on WS2 75 6.5 Summary 82 Chapter 7 Conclusion 83 References 86 List of Publications 93

    [1] R. Adzhri, M.M. Arshad, S.C. Gopinath, A. Ruslinda, M. Fathil, R. Ayub, M.N.M. Nor, C. Voon, High-performance integrated field-effect transistor-based sensors, Analytica Chimica Acta, 917 (2016) 1-18.
    [2] R.K. Ratnesh, A. Goel, G. Kaushik, H. Garg, M. Singh, B. Prasad, Advancement and challenges in MOSFET scaling, Materials Science in Semiconductor Processing, 134 (2021) 106002.
    [3] S. Valasa, V.R. Kotha, N. Vadthiya, Beyond Moore's law–A critical review of advancements in negative capacitance field effect transistors: A revolution in next-generation electronics, Materials Science in Semiconductor Processing, 173 (2024) 108116.
    [4] Q. Zhang, Y. Zhang, Y. Luo, H. Yin, New structure transistors for advanced technology node CMOS ICs, National Science Review, 11 (2024) nwae008.
    [5] C. Tsai, Y. Liu, C. Tu, B. Huang, S. Jan, Y. Chen, J. Chen, S. Chueh, C. Cheng, C. Tsen, Highly Stacked 8 Ge0. 9Sn0. 1 Nanosheet pFETs with Ultrathin Bodies (~ 3 nm) and Thick Bodies (~ 30 nm) Featuring the Respective Record ION/IOFF of 1.4 x107 and Record ION of 92uA at Vov= VDS=− 0.5 V by CVD Epitaxy and Dry Etching, in: Proceedings of the 2021 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2021, pp. 11-16.
    [6] G. Bae, D.-I. Bae, M. Kang, S. Hwang, S. Kim, B. Seo, T. Kwon, T. Lee, C. Moon, Y. Choi, 3nm GAA technology featuring multi-bridge-channel FET for low power and high performance applications, in: 2018 IEEE International Electron Devices Meeting (IEDM), IEEE, 2018, pp. 28.27. 21-28.27. 24.
    [7] C. Li, H. Lin, J. Li, X. Yin, Y. Zhang, Z. Kong, G. Wang, H. Zhu, H.H. Radamson, Growth and Selective Etch of Phosphorus-Doped Silicon/Silicon–Germanium Multilayers Structures for Vertical Transistors Application, Nanoscale research letters, 15 (2020) 1-12.
    [8] K. Tomita, T. Shiraishi, H. Kato, H. Kishimoto, K. Miyashita, K. Kobayashi, New Process Integration of Sequential Phosphorus-Doped Silicon for Trench Field Plate Power MOSFETs, IEEE Transactions on Semiconductor Manufacturing, 34 (2021) 317-322.
    [9] N. Bourahla, B. Hadri, A. Bourahla, Impact of channel doping concentration on the performance characteristics and the reliability of ultra-thin double gate DG-FinFET compared with nano-single gate FD-SOI-MOSFET by using TCAD-silvaco tool, Silicon, 14 (2022) 3477-3491.
    [10] P. Rajput, K. Tewari, Effect of Doping Concentration on Electrical Parameter of Tri-Gate Junctionless N-channel FinFET, Int. J. Res. Appl. Sci. Eng. Technol., 9 (2021) 460-466.
    [11] H.-Y. Chang, Y.-C.S. Wu, C.-H. Chang, K.-L. Lin, A. Joshi, B.M. Basol, Nano-scale depth profiles of electrical properties of phosphorus doped silicon for ultra-shallow junction evaluation, IEEE Transactions on Semiconductor Manufacturing, 34 (2021) 357-364.
    [12] M. Lee, H.-Y. Ryu, E. Ko, D.-H. Ko, Effects of phosphorus doping and postgrowth laser annealing on the structural, electrical, and chemical properties of phosphorus-doped silicon films, ACS Applied Electronic Materials, 1 (2019) 288-301.
    [13] K. Endo, Y. Ishikawa, Y. Liu, M. Masahara, T. Matsukawa, S.-I. O'uchi, K. Ishii, H. Yamauchi, J. Tsukada, E. Suzuki, Experimental evaluation of effects of channel doping on characteristics of FinFETs, IEEE electron device letters, 28 (2007) 1123-1125.
    [14] K.-M. Liu, F.-I. Peng, K.-P. Peng, H.-C. Lin, T.-Y. Huang, The effects of channel doping concentration for n-type junction-less double-gate poly-Si nanostrip transistors, Semiconductor Science and Technology, 29 (2014) 055001.
    [15] J. Liu, T. Teraji, B. Da, Y. Koide, Boron-doped diamond MOSFETs with high output current and extrinsic transconductance, IEEE Transactions on Electron Devices, 68 (2021) 3963-3967.
    [16] J. Liu, T. Teraji, B. Da, Y. Koide, High output current boron-doped diamond metal-semiconductor field-effect transistors, IEEE Electron Device Letters, 40 (2019) 1748-1751.
    [17] D.-K. Kim, S.-B. Hong, K. Jeong, C. Lee, H. Kim, M.-H. Cho, p–n junction diode using plasma boron-doped black phosphorus for high-performance photovoltaic devices, ACS nano, 13 (2019) 1683-1693.
    [18] D. Fleetwood, M. Shaneyfelt, J. Schwank, Estimating oxide‐trap, interface‐trap, and border‐trap charge densities in metal‐oxide‐semiconductor transistors, Applied physics letters, 64 (1994) 1965-1967.
    [19] D. Fleetwood, M. Shaneyfelt, W. Warren, J. Schwank, T. Meisenheimer, P. Winokur, Border traps: Issues for MOS radiation response and long-term reliability, Microelectronics Reliability, 35 (1995) 403-428.
    [20] O. Prakash, A. Gupta, G. Pahwa, J. Henkel, Y.S. Chauhan, H. Amrouch, Impact of interface traps on negative capacitance transistor: Device and circuit reliability, IEEE Journal of the Electron Devices Society, 8 (2020) 1193-1201.
    [21] M. Wang, A review of reliability in gate-all-around nanosheet devices, Micromachines, 15 (2024) 269.
    [22] K. Lo, Study on the rapid thermal annealing process of low-energy arsenic and phosphorous ion-implanted silicon by reflective second harmonic generation, Journal of Physics D: Applied Physics, 38 (2005) 3926.
    [23] G. Lüpke, Characterization of semiconductor interfaces by second-harmonic generation, Surface Science Reports, 35 (1999) 75-161.
    [24] S. Brahma, C.-W. Liu, K.-Y. Lo, The evolution of structure and defects in the implanted Si surface: Inspecting by reflective second harmonic generation, Applied Surface Science, 388 (2016) 517-523.
    [25] H. Long, A.A. Habeeb, D.M. Kinyua, K. Wang, B. Wang, P. Lu, Influences of Ga doping on crystal structure and polarimetric pattern of SHG in ZnO nanofilms, Nanomaterials, 9 (2019) 905.
    [26] S. Dhara, K. Imakita, M. Mizuhata, M. Fujii, Europium doping induced symmetry deviation and its impact on the second harmonic generation of doped ZnO nanowires, Nanotechnology, 25 (2014) 225202.
    [27] J. Mihaychuk, J. Bloch, Y. Liu, H. Van Driel, Time-dependent second-harmonic generation from the Si–SiO2 interface induced by charge transfer, Optics Letters, 20 (1995) 2063-2065.
    [28] J. Mihaychuk, N. Shamir, H. Van Driel, Multiphoton photoemission and electric-field-induced optical second-harmonic generation as probes of charge transfer across the S i/S i O 2 interface, Physical Review B, 59 (1999) 2164.
    [29] J.L. Fiore, V.V. Fomenko, D. Bodlaki, E. Borguet, Second harmonic generation probing of dopant type and density at the Si/SiO2 interface, Applied Physics Letters, 98 (2011).
    [30] H. Park, J. Qi, Y. Xu, K. Varga, S. Weiss, B. Rogers, G. Lüpke, N. Tolk, Characterization of boron charge traps at the interface of Si/SiO2 using second harmonic generation, Applied Physics Letters, 95 (2009).
    [31] G. Ko, H.-Y. Kim, J. Ahn, Y.-M. Park, K.-Y. Lee, J. Kim, Graphene-based nitrogen dioxide gas sensors, Current Applied Physics, 10 (2010) 1002-1004.
    [32] S. Yang, C. Jiang, S.-h. Wei, Gas sensing in 2D materials, Applied Physics Reviews, 4 (2017).
    [33] C. Anichini, W. Czepa, D. Pakulski, A. Aliprandi, A. Ciesielski, P. Samorì, Chemical sensing with 2D materials, Chemical Society Reviews, 47 (2018) 4860-4908.
    [34] N.R. Glavin, R. Rao, V. Varshney, E. Bianco, A. Apte, A. Roy, E. Ringe, P.M. Ajayan, Emerging applications of elemental 2D materials, Advanced Materials, 32 (2020) 1904302.
    [35] N. Barsan, U. Weimar, Conduction model of metal oxide gas sensors, Journal of electroceramics, 7 (2001) 143-167.
    [36] C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Metal oxide gas sensors: sensitivity and influencing factors, sensors, 10 (2010) 2088-2106.
    [37] N. Barsan, D. Koziej, U. Weimar, Metal oxide-based gas sensor research: How to?, Sensors and Actuators B: Chemical, 121 (2007) 18-35.
    [38] A. Dey, Semiconductor metal oxide gas sensors: A review, Materials science and Engineering: B, 229 (2018) 206-217.
    [39] D.S. Schulman, A.J. Arnold, S. Das, Contact engineering for 2D materials and devices, Chemical Society Reviews, 47 (2018) 3037-3058.
    [40] Y. Wang, J.C. Kim, R.J. Wu, J. Martinez, X. Song, J. Yang, F. Zhao, A. Mkhoyan, H.Y. Jeong, M. Chhowalla, Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors, Nature, 568 (2019) 70-74.
    [41] S. Brahma, C.-W. Yang, C.-H. Wu, F.-M. Chang, T.-J. Wu, C.-S. Huang, K.-Y. Lo, The optical response of ZnO nanorods induced by oxygen chemisorption and desorption, Sensors and Actuators B: Chemical, 259 (2018) 900-907.
    [42] Y.-H. Huang, T.-Y. Yen, M.-T. Shi, Y.-H. Hung, W.-T. Chen, C.-H. Wu, K.-M. Hung, K.-Y. Lo, Competition between oxygen and water molecules on SiO2/P-doped Si surface: The electrical dipole evolution on water/oxygen-adsorbed oxide surface, Sensors and Actuators B: Chemical, 376 (2023) 133011.
    [43] H. Peng, E. Adles, J.-F. Wang, D. Aspnes, Relative bulk and interface contributions to optical second-harmonic generation in silicon, Physical Review B—Condensed Matter and Materials Physics, 72 (2005) 205203.
    [44] C. Reitböck, D. Stifter, A. Alejo-Molina, K. Hingerl, H. Hardhienata, Bulk quadrupole and interface dipole contribution for second harmonic generation in Si (111), Journal of optics, 18 (2016) 035501.
    [45] P. Damas, D. Marris-Morini, E. Cassan, L. Vivien, Bond orbital description of the strain-induced second-order optical susceptibility in silicon, Physical Review B, 93 (2016) 165208.
    [46] H. Hardhienata, A. Alejo-Molina, M.D. Birowosuto, A. Baghbanpourasl, H. Alatas, Spatial dispersion contribution to second harmonic generation in inversion-symmetric materials, Physical Review B, 103 (2021) 125410.
    [47] W.-T. Chen, T.-Y. Yen, Y.-H. Hung, Y.-H. Huang, S.-J. Chiu, K.-Y. Lo, Second harmonic generation and simplified bond hyperpolarizability model analyses on the intermixing of Si/SiGe stacked multilayers for gate-all-around structure, Nanotechnology, 34 (2023) 145702.
    [48] W.-T. Chen, T.-Y. Yen, Y.-H. Hung, K.-Y. Lo, Structure of an in situ phosphorus-doped silicon ultrathin film analyzed using second harmonic generation and simplified bond-hyperpolarizability model, Nanomaterials, 12 (2022) 4307.
    [49] C. Zhou, W. Yang, H. Zhu, Mechanism of charge transfer and its impacts on Fermi-level pinning for gas molecules adsorbed on monolayer WS2, The Journal of chemical physics, 142 (2015).
    [50] X. Wang, Y. Sun, K. Liu, Chemical and structural stability of 2D layered materials, 2D Materials, 6 (2019) 042001.
    [51] M. Donarelli, L. Ottaviano, 2D materials for gas sensing applications: a review on graphene oxide, MoS2, WS2 and phosphorene, Sensors, 18 (2018) 3638.
    [52] e.P. Franken, A.E. Hill, C. Peters, G. Weinreich, Generation of optical harmonics, Physical review letters, 7 (1961) 118.
    [53] J.D. Jackson, Classical electrodynamics, John Wiley & Sons, 1998.
    [54] F. Wang, Multipolar Nonlinear Optics of Surfaces and Bulk Materials, in, Ph. D Thesis 898. Tampere University of Technology, 2010.
    [55] C. Oseen, The interaction between two electric dipoles and the rotation of the polarization plane in crystals and liquids, Ann. Phys., 353 (1915) 1-56.
    [56] P. Ewald, Reasoning of the crystal optics, in, PhD thesis, München, 1912.
    [57] E. Adles, D. Aspnes, Application of the anisotropic bond model to second-harmonic generation from amorphous media, Physical Review B—Condensed Matter and Materials Physics, 77 (2008) 165102.
    [58] 洪楊皓, 氣體分子吸附在 WS2 的電極化演進: 二次諧波與 SBHM 整合分析, in, 2023.
    [59] O. Aktsipetrov, A. Fedyanin, A. Melnikov, E. Mishina, A. Rubtsov, M. Anderson, P. Wilson, M. Ter Beek, X. Hu, J. Dadap, dc-electric-field-induced and low-frequency electromodulation second-harmonic generation spectroscopy of Si (001)− SiO 2 interfaces, Physical Review B, 60 (1999) 8924.
    [60] T.Y. Yen, Y.H. Hung, Y.Z. Lee, Y.T. Ho, Y.W. Lan, C.H. Wu, K.M. Hung, K.Y. Lo, Gas Adsorption Mechanism on 2D Materials: The Hyperpolarizability Evolution Analyzed by Nonlinear Optics, Advanced Functional Materials, 34 (2024) 2406005.
    [61] T.-Y. Yen, Y.-H. Huang, M.-T. Shih, W.-T. Chen, K.-M. Hung, K.-Y. Lo, Correlation of time-dependent nonlinear response with phosphorus concentration in Si ultrathin film, Surfaces and Interfaces, 36 (2023) 102541.
    [62] N. Shamir, J. Mihaychuk, H. Van Driel, H. Kreuzer, Universal mechanism for gas adsorption and electron trapping on oxidized silicon, Physical review letters, 82 (1999) 359.
    [63] S.M. Sze, Semiconductor devices: physics and technology, John wiley & sons, 2008.
    [64] J. Del Alamo, S. Swirhun, R. Swanson, Simultaneous measurement of hole lifetime, hole mobility and bandgap narrowing in heavily doped n-type silicon, in: 1985 International Electron Devices Meeting, IEEE, 1985, pp. 290-293.
    [65] J. Bloch, J. Mihaychuk, H. Van Driel, Electron photoinjection from silicon to ultrathin Si O 2 films via ambient oxygen, Physical Review Letters, 77 (1996) 920.
    [66] T. Scheidt, E. Rohwer, H. Von Bergmann, H. Stafast, Charge-carrier dynamics and trap generation in native S i/S i O 2 interfaces probed by optical second-harmonic generation, Physical Review B, 69 (2004) 165314.
    [67] S.K. Dhayalan, J. Kujala, J. Slotte, G. Pourtois, E. Simoen, E. Rosseel, A. Hikavyy, Y. Shimura, S. Iacovo, A. Stesmans, On the manifestation of phosphorus-vacancy complexes in epitaxial Si: P films, Applied Physics Letters, 108 (2016).
    [68] T.-Y. Yen, M.-T. Shih, L.-F. Song, K.-M. Hung, K.-Y. Lo, Unveiling dopant concentration in boron doped Si ultrathin film: Enhanced analysis using time-dependent second harmonic generation, Surfaces and Interfaces, 41 (2023) 103236.
    [69] A. Grove, O. Leistiko Jr, C.-T. Sah, Redistribution of acceptor and donor impurities during thermal oxidation of silicon, Journal of Applied Physics, 35 (1964) 2695-2701.
    [70] Y.J. Oh, J.-H. Hwang, H.-K. Noh, J. Bang, B. Ryu, K.-J. Chang, Ab initio study of boron segregation and deactivation at Si/SiO2 interface, Microelectronic engineering, 89 (2012) 120-123.
    [71] T. Scheidt, E. Rohwer, P. Neethling, H. Von Bergmann, H. Stafast, Ionization and shielding of interface states in native p+-Si/SiO2 probed by electric field induced second harmonic generation, Journal of Applied Physics, 104 (2008).
    [72] H. Park, Y. Xu, K. Varga, J. Qi, L.C. Feldman, G. Lüpke, N. Tolk, Photon energy threshold for filling boron induced charge traps in SiO2 near the Si/SiO2 interface using second harmonic generation, Applied physics letters, 97 (2010).
    [73] J. Snel, The doped Si/SiO2 interface, Solid-State Electronics, 24 (1981) 135-139.
    [74] M.Y. Ghannam, Characterization of the heavily (non-degenerate) boron-doped Si SiO2 interface, Solid-State Electronics, 30 (1987) 1147-1152.
    [75] M. Cernusca, R. Heer, G.A. Reider, Photoinduced trap generation at the Si-SiO2 interface, Applied Physics B, 66 (1998) 367-370.
    [76] J. Yosinski, J. Clune, Y. Bengio, H. Lipson, How transferable are features in deep neural networks?, Advances in neural information processing systems, 27 (2014).
    [77] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, Journal of Computational physics, 378 (2019) 686-707.
    [78] S. Goswami, C. Anitescu, S. Chakraborty, T. Rabczuk, Transfer learning enhanced physics informed neural network for phase-field modeling of fracture, Theoretical and Applied Fracture Mechanics, 106 (2020) 102447.
    [79] H.-H. Liu, T.-Y. Yen, Y.-H. Kuo, Y.-J. Tsai, B.-Y. Chen, K.-M. Hung, K.Y. Lo, Real-Time and Non-Destructive Detection of Interface Trap Density Using Second Harmonic Generation with a Physics-Informed Neural Network, ACS Applied Electronic Materials, (2025).
    [80] B. Wherrett, Scaling rules for multiphoton interband absorption in semiconductors, Journal of the Optical Society of America B, 1 (1984) 67-72.
    [81] N. Yamazoe, K. Suematsu, K. Shimanoe, Two types of moisture effects on the receptor function of neat tin oxide gas sensor to oxygen, Sensors and Actuators B: Chemical, 176 (2013) 443-452.
    [82] S. Leonardi, W. Wlodarski, Y. Li, N. Donato, Z. Sofer, M. Pumera, G. Neri, A highly sensitive room temperature humidity sensor based on 2D-WS2 nanosheets, FlatChem, 9 (2018) 21-26.
    [83] T.-E. Huang, H.-H. Liu, C.-Y. Wang, B.-W. Liang, R.-Y. Hsu, C.-H. Wu, K.-M. Hung, Y.-W. Lan, K.Y. Lo, Quantitative Correlation for Recoverable Monolayer MoS2 Gas Sensing Mechanism: A Fundamental Approach, The Journal of Physical Chemistry C, 127 (2023) 18015-18025.
    [84] S. Mizushima, Determination of the amount of gas adsorption on SiO2/Si (100) surfaces to realize precise mass measurement, Metrologia, 41 (2004) 137.
    [85] M. Králik, Adsorption, chemisorption, and catalysis, Chemical Papers, 68 (2014) 1625-1638.
    [86] H. Swenson, N.P. Stadie, Langmuir’s theory of adsorption: A centennial review, Langmuir, 35 (2019) 5409-5426.
    [87] S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I. Probert, K. Refson, M.C. Payne, First principles methods using CASTEP, Zeitschrift für kristallographie-crystalline materials, 220 (2005) 567-570.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE