簡易檢索 / 詳目顯示

研究生: 林宜叡
Lin, Yi-Ruei
論文名稱: 製作無基材穿透式繞射光柵薄膜應用於極紫外光干涉式微影
Fabrication of a reliable free-standing transmission grating for extreme ultraviolet interfermetric lithography
指導教授: 林俊宏
Lin, Chun-Hung
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 96
中文關鍵詞: 極紫外光干涉式微影奈米壓印無基材穿透式光柵氫氧化鉀蝕刻
外文關鍵詞: extreme ultraviolet(EUV), interfermetric lithography(IL), nanoimprint, freestanding, KOH
相關次數: 點閱:82下載:24
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在以往的研究,極紫外光干涉式微影所使用的穿透式繞射光柵窗口皆為以氫氧化鉀(KOH)濕式蝕刻製作,但KOH濕式蝕刻製程不容易控制,需保持穩定的蝕刻速率。若有蝕刻液滲透至正面圖案,可能會造成光柵結構損壞。
    因此,為了改善KOH蝕刻的缺點,實驗使用奈米壓印微影術結合底層塗佈犧牲層PMGI的方式,成功的避免KOH蝕刻製程所造成的問題,製作出無基材穿透式繞射光柵。無基材光柵不需要透過KOH蝕刻就可以製作,因此相較於以往需成長Si3N4薄膜作為KOH蝕刻遮罩的一般穿透式光柵,我們可以大幅增加光穿透效率與製程良率,並且可以更佳的掌控每次干涉曝光所需的時間。除此之外,我們直接使用SU-8光阻當作穿透式繞射光柵的阻擋層。此阻擋層除了可以抑制零階光外,還可以藉由SU-8其固化後高穩定的特性,當作我們無基材穿透式繞射光柵的支撐層使用。SU-8阻擋層的製作不需要複雜的流程,直接對光阻進行曝光即可定義出阻擋層結構。實驗中我們使用嚴格耦合波分析法(RCWA)討論光柵之光學特性。
    最後,我們成功利用300奈米與200奈米週期的無基材穿透式光柵結合極紫外光干涉式微影,干涉出75奈米、50奈米、37.5奈米以及25奈米的PMMA阻劑的干涉條紋,並且光柵的製作不需要使用KOH蝕刻製程即可製作。

    In the experiment of transmission grating window fabrication, KOH etching process is the commonly used tool for fabrication of the windows. However, KOH etching process is not easy to control.
    Therefore, we proposed the use of nano-imprint and sacrificial layer (PMGI) process to improve the process yield of the transmission gratings and to reduce the overall process time. Freestanding transmission grating can increase the diffraction efficiency because it does not need a Si3N4 layer as a mask of KOH etching process. In order to further simplify the stop-layer process, we replace Cr metal with SU-8 photoresist that does not need complex process. The SU-8 stop-layer can not only suppress the zero order EUV light but also support our transmission grating structure. The optical behavior of a grating was analyzed by rigorous coupled-wave analysis (RCWA).
    In conclusion, we have fabricated 300-nm and 200-nm pitch freestanding transmission diffraction grating and successfully recorded 75, 50, 37.5 and 25 nm half-pitch interference fringe on the PMMA resist by EUV-IL experiment. These gratings can be easily transferred to any supporting frame. Therefore, KOH wet etching is not required. Overall processing time is reduced, and fabrication yield of transmission gratings is increased.

    摘要 I Abstract II 誌謝 III 表次 VII 圖次 VIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 論文架構 3 第二章 奈米壓印微影 4 2.1 文獻回顧 4 2.2壓印實驗材料與機台 7 2.2.1 實驗藥品 7 2.2.2 氣體輔助式壓印機台 8 2.2.3 氣體輔助式UV壓印機台 9 2.3 模仁製備 10 2.3.1 300 nm週期光柵母模製備 10 2.3.2 200 nm週期光柵母模製備 12 2.3.3 全氟聚醚(PerfluoroPolyether, PFPE)軟模製備 14 2.4 實驗結果與討論 15 2.4.1 阻劑SU-8與AMONIL(AMO) 15 2.4.2 熱壓成型奈米壓印實驗 18 2.4.3 UV奈米壓印實驗 20 2.5結論 24 第三章 傳統穿透式繞射光柵 26 3.1文獻回顧 26 3.2穿透式光柵實驗材料與機台 28 3.2.1實驗材料 28 3.2.2 KOH背向蝕刻載具 28 3.3穿透式光柵製程 29 3.3.1雙向側鍍製程 29 3.3.2 Cr金屬穿透式繞射光柵 31 3.3.3 SU-8穿透式繞射光柵製程 32 3.3.4 KOH背向蝕刻製程 34 3.4 阻擋層製程優化 35 3.5結論 41 第四章 無基材穿透式繞射光柵 44 4.1研究動機 44 4.2無基材穿透式繞射光柵製作 46 4.2.1 無基材SU-8穿透式繞射光柵 46 4.2.2無基材Cr金屬穿透式光柵製程 48 4.3製程優化 51 4.4結論 55 第五章 極紫外光干涉式微影 57 5.1文獻回顧 57 5.2 光源與機台介紹 58 5.2.1光源介紹 58 5.2.2 機台架構 61 5.3干涉理論 63 5.3.1 馬克斯威爾方程式推導 64 5.3.2 波的疊加 65 5.3.3干涉條紋對比度與同調度 66 5.3.4 時間同調與空間同調 68 5.3.5 光柵干涉條紋週期 69 5.4 極紫外光干涉實驗 70 5.4.1 工作距離 70 5.4.2 繞射效率 72 5.4.3 實驗步驟 79 5.5 極紫外光干涉實驗結果 79 5.5.1 傳統KOH蝕刻製程之300 nm週期穿透式繞射光柵 79 5.5.2 300nm週期無基材SU-8穿透式繞射光柵 82 5.5.3 300nm週期無基材Cr穿透式繞射光柵 85 5.5.4 200nm週期無基材SU-8穿透式繞射光柵 88 5.6結論 90 第六章 實驗總結與展望 92 6.1實驗總結 92 6.2 未來展望 93 參考文獻 94

    1. M. Goldstein, R. Hudyma, P. Naulleau, and S. Wurm, "Extreme-ultraviolet microexposure tool at 0.5 NA for sub-16 nm lithography," Optics Letters 33, 2995-2997 (2008).
    2. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Imprint of sub-25 nm vias and trenches in polymers," Applied Physics Letters 67, 3114-3116 (1995).
    3. Y. X. a. G. M. Whitesides, "Soft lithography," Annu. Rev. Mater. Sci. 28, 153-184 (1998).
    4. "http://memscyclopedia.org/su8.html.."
    5. "AMONIL & AMOPRIME - low viscosity imprint resist
    and adhesion promoter
    http://www.amo.de/fileadmin/user_upload/imgForProducts/AMO_NIL.pdf."
    6. J. H. Chang, and S. Y. Yang, "Gas pressurized hot embossing for transcription of micro-features," Microsystem Technologies 10, 76-80 (2003).
    7. H. T. H. Gao, W. Zhang, K. Morton, and S. Y. Chou, "Air cushion press for excellent uniformity, high yield, and fast nanoimprint across a 100 mm field," Nano letters 6, 2438-2441 (2006).
    8. H.-H. L. C.-H. Lin, W.-Y. Chen, and T.-C. Cheng, "Direct imprinting on a polycarbonate substrate with a compressed air press for polarizer applications," Microelectronic Engineering 88, 2026-2029 (2011).
    9. M. Bender, M. Otto, B. Hadam, B. Vratzov, B. Spangenberg, and H. Kurz, "Fabrication of nanostructures using a UV-based imprint technique," Microelectron. Eng. 53, 233-236 (2000).
    10. A. Hayek, Y. Xu, T. Okada, S. Barlow, X. Zhu, J. H. Moon, S. R. Marder, and S. Yang, "Poly(glycidyl methacrylate)s with controlled molecular weights as low-shrinkage resins for 3D multibeam interference lithography," Journal of Materials Chemistry 18, 3316-3318 (2008).
    11. C. Antonio, Characterisation and Optimisation of the Variable Frequency Microwave Technique and its Application to Microfabrication (2006).
    12. M. Wei, D. T. Attwood, T. K. Gustafson, and E. H. Anderson, "Patterning a 50-nm period grating using soft-X-RAY spatial frequency multiplication," Journal of Vacuum Science & Technology B 12, 3648-3652 (1994).
    13. H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, "Sub-50 nm period patterns with EUV interference lithography," Microelectron. Eng. 67–68, 56-62 (2003).
    14. B. Paeivaenranta, A. Langner, E. Kirk, C. David, and Y. Ekinci, "Sub-10 nm patterning using EUV interference lithography," Nanotechnology 22, 375302 (375307pp) (2011).
    15. M. Ahn, R. K. Heilmann, and M. L. Schattenburg, "Fabrication of ultrahigh aspect ratio freestanding gratings on silicon-on-insulator wafers," J. Vac. Sci. 25, 2593-2597 (2007).
    16. S. M. Sze, Semiconductor Device : Physics and Technology (2002).
    17. H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgärtel, "Anisotropic Etching of Crystalline Silicon in Alkaline Solutions: II . Influence of Dopants," Journal of The Electrochemical Society 137, 3626-3632 (1990).
    18. E. D. Palik, H. F. Gray, and P. B. Klein, "A raman-study of etching silicon in aqueous KOH," Journal of the Electrochemical Society 130, 956-959 (1983).
    19. Y. Fukushima, Y. Yamaguchi, T. Iguchi, T. Urayama, T. Harada, T. Watanabe, and H. Kinoshita, "Development of interference lithography for 22 nm node and below," Microelectron. Eng. 88, 1944-1947 (2011).
    20. T. Itani, "Recent status and future direction of EUV resist technology," Microelectron. Eng. 86, 207-212 (2009).
    21. N. H. Christian Wagner, "EUV lithography: Lithography gets extreme," Nature Photonics 4, 24 - 26 (2010)
    22. greg Tallents, erik wagenaars, and g. Pert, "Optical lithography: Lithography at EUV wavelengths," Nature Photonics 4, 809-811 (2010).
    23. H. H. Solak, D. He, W. Li, and F. Cerrina, "Nanolithography using extreme ultraviolet lithography interferometry: 19 nm lines and spaces," Journal of Vacuum Science & Technology B 17, 3052-3057 (1999).
    24. C. Kunz, "Synchrotron radiation," Meeting on Technology arising from High-energy Physics, v.1, 155-166 (1974).
    25. 劉遠中, "同步輻射光源的建造與發展," 科儀新知 第16卷, 第2期, 4-7 (1994).
    26. 劉遠中, "同步輻射興建回顧," 科儀新知 第19卷, 第2期, 60-65 (1997).
    27. Y. F. Song, P. C. Tseng, L. R. Huang, S. C. Chung, T. E. Dann, C. T. Chen, and K. L. Tsang, "Design of an ultra-high resolution and high flux cylindrical grating monochromator undulator beamline," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 467–468, Part 1, 496-499 (2001).
    28. M. Saidani, and H. H. Solak, "High diffraction-efficiency molybdenum gratings for EUV lithography," Microelectron. Eng. 86, 483-485 (2009).
    29. P. P. Naulleau, F. Salmassi, E. M. Gullikson, and J. A. Liddle, "Design and fabrication of a high-efficiency extreme-ultraviolet binary phase-only computer-generated hologram," Appl. Opt. 46, 2581-2585 (2007).
    30. M. Born, Principles of Optics (1964).

    下載圖示 校內:2018-08-29公開
    校外:2018-08-29公開
    QR CODE