| 研究生: |
張力夫 Chang, Li-Fu |
|---|---|
| 論文名稱: |
利用絕熱地圖優化光纖至矽波導模態演化耦合器 Optimization of Fiber to Silicon Waveguide Mode Evolution Couplers by Adiabaticity Map |
| 指導教授: |
曾碩彥
Tseng, Shuo-Yen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 矽波導 、絕緣層覆矽 、絕熱理論 、絕熱地圖 、模態演化耦合器 |
| 外文關鍵詞: | Si Waveguide, Silicon-on-Insulator, Adiabatic Theory, Adiabaticity Map, Mode Evolution Coupler |
| 相關次數: | 點閱:138 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文將絕熱地圖(Adiabaticity Map)運用於矽光子元件設計,透過計算瞬時超模態的絕熱參數,繪製多個元件參數下的絕熱關係,最後統合成絕熱地圖,以此優化絕熱路徑,得出最佳設計參數,提高耦合效率的同時,保有較大的頻寬,以及良好的製程容忍度與對準容忍度。
基於絕熱參數所繪製的絕熱地圖,透過避開地圖中的高耦合區域,可以相對自由地選擇耦合長度以及元件參數,本次設計的絕緣層覆矽之逆向梯形(裸)矽波導模態演化耦合器(Inverse taper waveguide mode evolution coupler),由錐形光纖與矽波導的直接耦合,達到光纖與光子晶片的光學互連,矽波導為去除基板與埋入氧化層的裸波導,優化後的元件參數在相同耦合長度下,矽波導輸出端的基本TE模態提高約20 以上的耦合效率,1-dB頻寬從1.43 到1.71 約280 ,3-dB頻寬從1.3 到1.9 約為600 ,中心工作波長為1.55 ,有極大的工作頻寬,並同時保有一定的製程容忍度與三維對準容忍度。
This paper utilizes the adiabaticity map to optimize the design of silicon photonic devices. By calculating the instantaneous adiabaticity parameters and considering the adiabatic relationships for various device parameters, we construct the comprehensive adiabaticity map in order to optimize adiabatic path and determine the best design parameters. This research enhances coupling efficiency, also maintains a large bandwidth, and ensures good fabrication and alignment tolerances.
In order to avoid high-coupling regions, the adiabaticity map based on adiabaticity parameter allows flexible choices for coupling length and device parameters. The proposed design in this research is an inverse taper waveguide mode evolution coupler, directly connecting a tapered optical fiber with a silicon waveguide for optical interconnects. After optimization, the device achieves 20% higher coupling efficiency for the fundamental TE mode and 1-dB bandwidth is about 280 . The central operating wavelength is 1.55 , providing a significantly wide operating bandwidth, while also maintaining a certain level of fabrication tolerances and three-dimensional alignment tolerances.
[1] F. Gardes, A. Shooa, G. De Paoli, I. Skandalos, S. Ilie, T. Rutirawut, W. Talataisong, J. Faneca, V. Vitali, Y. Hou, T. D. Bucio, I. Zeimpekis, C. Lacava, and P. Petropoulos, "A Review of Capabilities and Scope for Hybrid Integration Offered by Silicon-Nitride-Based Photonic Integrated Circuits," Sensors 22, 4227 (2022).
[2] C. Errando-Herranz, A. Y. Takabayashi, P. Edinger, H. Sattari, K. B. Gylfason, and N. Quack, "MEMS for Photonic Integrated Circuits," IEEE Journal of Selected Topics in Quantum Electronics 26, 1-16 (2020).
[3] C. Doerr, "Silicon photonic integration in telecommunications," Frontiers in Physics 3 (2015).
[4] S. Rumley, D. Nikolova, R. Hendry, Q. Li, D. Calhoun, and K. Bergman, "Silicon Photonics for Exascale Systems," J. Lightwave Technol. 33, 547-562 (2015).
[5] J. W. Silverstone, D. Bonneau, J. L. O’Brien, and M. G. Thompson, "Silicon Quantum Photonics," IEEE Journal of Selected Topics in Quantum Electronics 22, 390-402 (2016).
[6] R. Soref, "The Past, Present, and Future of Silicon Photonics," IEEE Journal of Selected Topics in Quantum Electronics 12, 1678-1687 (2006).
[7] B. Jalali, and S. Fathpour, "Silicon Photonics," J. Lightwave Technol. 24, 4600-4615 (2006).
[8] T. G. Tiecke, K. P. Nayak, J. D. Thompson, T. Peyronel, N. P. de Leon, V. Vuletić, and M. D. Lukin, "Efficient fiber-optical interface for nanophotonic devices," Optica 2, 70-75 (2015).
[9] D. X. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. V. Thourhout, S. Keyvaninia, and S. K. Selvaraja, "Silicon Photonic Integration Platform—Have We Found the Sweet Spot?," IEEE Journal of Selected Topics in Quantum Electronics 20, 189-205 (2014).
[10] G. Son, S. Han, J. Park, K. Kwon, and K. Yu, "High-efficiency broadband light coupling between optical fibers and photonic integrated circuits," Nanophotonics 7, 1845-1864 (2018).
[11] S. R. Bickham, M. A. Marro, J. A. Derick, W. L. Kuang, X. Feng, and Y. Hua, "Reduced Cladding Diameter Fibers for High-Density Optical Interconnects," J. Lightwave Technol. 38, 297-302 (2020).
[12] Y. A. Vlasov, and S. J. McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Opt. Express 12, 1622-1631 (2004).
[13] X. Mu, S. Wu, L. Cheng, and H. Y. Fu, "Edge Couplers in Silicon Photonic Integrated Circuits: A Review," Applied Sciences 10, 1538 (2020).
[14] R. Marchetti, C. Lacava, L. Carroll, K. Gradkowski, and P. Minzioni, "Coupling strategies for silicon photonics integrated chips [Invited]," Photon. Res. 7, 201-239 (2019).
[15] L. Cheng, S. Mao, Z. Li, Y. Han, and H. Y. Fu, "Grating Couplers on Silicon Photonics: Design Principles, Emerging Trends and Practical Issues," Micromachines 11, 666 (2020).
[16] M. J. Burek, C. Meuwly, R. E. Evans, M. K. Bhaskar, A. Sipahigil, S. Meesala, B. Machielse, D. D. Sukachev, C. T. Nguyen, J. L. Pacheco, E. Bielejec, M. D. Lukin, and M. Lončar, "Fiber-Coupled Diamond Quantum Nanophotonic Interface," Physical Review Applied 8, 024026 (2017).
[17] S. Gröblacher, J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, "Highly efficient coupling from an optical fiber to a nanoscale silicon optomechanical cavity," Applied Physics Letters 103 (2013).
[18] R. S. Daveau, K. C. Balram, T. Pregnolato, J. Liu, E. H. Lee, J. D. Song, V. Verma, R. Mirin, S. W. Nam, L. Midolo, S. Stobbe, K. Srinivasan, and P. Lodahl, "Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide," Optica 4, 178-184 (2017).
[19] G. Son, R. A. Pradono, J. B. You, Y. Jeong, K. Kwon, J. Park, S. Han, D. S. Han, Y. Jung, and K. Yu, "Highly efficient broadband adiabatic mode transformation between single-mode fibers and silicon waveguides," J. Lightwave Technol., 1-9 (2023).
[20] D. R. Turner, "Etch procedure for optical fibers," (Google Patents, 1984).
[21] B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, "Scanning near-field optical microscopy with aperture probes: Fundamentals and applications," The Journal of Chemical Physics 112, 7761-7774 (2000).
[22] A. K. Mallik, A. Kumar, G. Gupta, and A. Bhatnagar, "Single mode fiber-optic temperature sensor fabricated using wet etching," in International Conference on Fibre Optics and Photonics(Optica Publishing Group, Chennai, 2012), p. TPo.34.
[23] J. R. Pierce, "Coupling of Modes of Propagation," Journal of Applied Physics 25, 179-183 (2004).
[24] A. W. Snyder, and J. D. Love, Optical waveguide theory (Chapman and hall London, 1983).
[25] K. Okamoto, Fundamentals of optical waveguides (Elsevier, 2021).
[26] A. K. Taras, A. Tuniz, M. A. Bajwa, V. Ng, J. M. Dawes, C. G. Poulton, and C. M. De Sterke, "Shortcuts to adiabaticity in waveguide couplers–theory and implementation," Advances in Physics: X 6, 1894978 (2021).
[27] J.-M. Liu, Photonic devices (Cambridge University Press, 2009).
[28] M. Born, and V. Fock, "Beweis des Adiabatensatzes," Zeitschrift für Physik 51, 165-180 (1928).
[29] J. S. Cook, "Tapered Velocity Couplers," Bell System Technical Journal 34, 807-822 (1955).
[30] Y. Hung, Jr., C.-H. Chen, G.-X. Lu, F.-C. Liang, H.-C. Chung, and S.-Y. Tseng, "Compact and robust 2 × 2 fast quasi-adiabatic 3-dB couplers on SOI strip waveguides," Optics & Laser Technology 145, 107485 (2022).
[31] H.-C. Chung, Z.-Y. Li, F.-C. Liang, K.-S. Lee, and S.-Y. Tseng, The fast quasiadiabatic approach to optical waveguide design (SPIE, 2019).
[32] Y. J. Hung, Z. Y. Li, H. C. Chung, F. C. Liang, M. Y. Jung, T. H. Yen, and S. Y. Tseng, "Mode-evolution-based silicon-on-insulator 3 dB coupler using fast quasiadiabatic dynamics," Opt Lett 44, 815-818 (2019).
[33] H. C. Chung, K. S. Lee, and S. Y. Tseng, "Short and broadband silicon asymmetric Y-junction two-mode (de)multiplexer using fast quasiadiabatic dynamics," Opt Express 25, 13626-13634 (2017).
[34] G. Keiser, Optical fiber communications (McGraw-Hill New York, 2000).