簡易檢索 / 詳目顯示

研究生: 林承翰
Lin, Chen-Han
論文名稱: 以分層邊界應力控制標度槽探討基樁於飽和粉土質砂中之側推行為
Pushover response of a model pile in saturated silty sand using a stress-controlled calibration chamber
指導教授: 張文忠
Chang, Wen-Jong
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 109
中文關鍵詞: 霧式霣落標度槽應力控制邊界試驗基樁側推p-y曲線
外文關鍵詞: Mist pluviation, Calibration chamber, Boundary stress-controlled test, Model pile pushover, p-y curves
相關次數: 點閱:156下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 離岸風力發電為台灣未來急需發展的再生能源之一,而台灣西海岸為砂土與粉土堆積土層,且時常受到颱風、地震影響,眾多因素下對於基樁基礎選擇需審慎考慮。由於海床土壤樁土互制以及基樁載重傳遞機制複雜,發展一可控制土壤邊界應力之模型基樁側推試驗並量測樁土間互制反應對樁基礎研究具有相當價值。傳統基樁側向載重試驗多為現地基樁或室內縮尺固定邊界試驗,花費高昂、重複性低、與現地土層狀態仍有差異,本文介紹一應力控制邊界試驗平台,以原用於CPT之標度槽,轉換為可分層控制邊界應力、量測邊界應變並具可應用於飽和土壤試體,同時以霧式霣落法完成飽和粉土質細砂試體,利用基樁側推系統搭配模型基樁,以數值模擬計算不同側推位移時之邊界應力,以邊界應力補償方式降低邊界效應模擬現地半無限空間狀態,量測基樁受側推時樁土互制反應、不同有效應力狀態下土壤p-y行為,以提供發展不同飽和土層p-y曲線,協助離岸風電產業發展。

    Wind power is one of the important renewable energy sources. Because of restrictions such as vibration and noise of land based wind turbines, offshore wind turbines are preferred options in Taiwan. Due to seismic, wind, wave and ocean current loadings and the thick layers of silty sand in the western seabed of Taiwan, pile foundations are considered more suitable for offshore wind turbine although lateral load transfer mechanism of pile is complicated for various soil conditions. This study develops a testing system that is capable of controlling boundary stress conditions of a model pile under pushover loading. A layered calibration chamber which was used for CPT is converted to a field stress simulator to mimic and compensated pressure conditions during pushover loadings. To prepare the saturated, silty sand specimen, mist pluviation (MP) technique is adopted. To reduce boundary effects during pushover tests, numerical analyses were performed to estimate the distribution boundary stresses and those values are used as boundary compensated pressures in calibration chamber. Strain gauges and tactile sensors for bending strain and interface stress measurement are attached to model pile and embedded in the calibration chamber. Lateral loads are applied on the pile top with different constrained conditions. With different consolidation pressure, apply normal and over consolidation condition to pushover tests. This thesis will provide verification data for p-y curves in saturated silty soils under different effective stress conditions.

    論文摘要(I) EXTENDED ABSTRACT(II) 誌謝(IX) 目錄(X) 表目錄(XIII) 圖目錄(XIV) 第 一 章 緒論(1) 1.1 研究背景(1) 1.2 研究動機與目的(2) 1.3 研究方法與流程(2) 1.4 論文架構(4) 第 二 章 文獻回顧(5) 2.1 重模試體製作(5) 2.1.1 Moist tamping(MT)濕夯法(5) 2.1.2 Air pluviation(AP)空氣霣落法(6) 2.1.3 Water pluviation(WP)濕式霣落法(7) 2.1.4 Mist pluviation(MP)霧式霣落法(7) 2.2 壓力控制邊界系統之發展(11) 2.2.1 標度槽系統之邊界條件(11) 2.2.2 標度槽系統之比較(13) 2.3 基樁承受側向載重之理論(13) 2.3.1 極限阻抗分析(14) 2.3.2 地基反力分析法(Subgrade Reaction Method)(16) 2.3.3 p-y曲線分析法(18) 2.3.4 美國石油協會(API 2007)建議之p-y曲線(20) 2.4 標度槽模型基樁試驗回顧(22) 2.4.1 標度槽評估基樁於砂土之極限側向承載力(Lee et al., 2012)(23) 2.4.2 基樁受側推時與土壤間互制行為(Lin et al., 2015)(25) 第 三 章 試驗儀器及量測系統配置(30) 3.1 試驗儀器系統配置(30) 3.2 霧式霣落器子系統(33) 3.2.1 霣落器(Pluviator)(34) 3.2.2 水霧區(Mist area)(38) 3.3 標度槽-應力控制邊界系統(40) 3.3.1 垂直向應力控制邊界(42) 3.3.2 側向應力控制邊界與光纖感測器(45) 3.3.3 壓力控制系統(49) 3.4 模型基樁監測子系統(52) 3.4.1 防水型應變計(55) 3.4.2 可撓式薄膜壓力感測器(57) 3.4.3 孔隙水壓計(59) 3.5 基樁側推子系統(60) 第 四 章 試驗流程與資料處理(65) 4.1 試驗材料之性質(65) 4.2 試體準備流程(70) 4.3 試驗流程(72) 4.4 訊號處理與資料分析(75) 4.4.1 資料處理流程(75) 4.4.2 基樁反應分析(77) 4.4.3 多項式迴歸分析(77) 第 五 章 應力控制邊界試驗監測與結果分析(79) 5.1 邊界狀態監測結果(79) 5.1.1 孔隙水壓監測(79) 5.1.2 邊界補償應力監測(84) 5.2 長樁樁土互制反應(86) 5.2.1 典型試驗結果(86) 5.2.2 邊界補償效應比較(91) 5.2.3 樁頭束制效應比較(92) 5.2.4 正常與過壓密效應比較(94) 5.3 p-y曲線分析(95) 5.3.1 多項式迴歸驗證(95) 5.3.2 反力直接量測與樑理論分析比較(96) 5.3.3 邊界補償效應比較(99) 5.3.4 試驗結果與API(2007)建議之比較(103) 第 六 章 結論與建議(104) 6.1 結論(104) 6.2 建議(105) 參考文獻(106)

    1.王統立(2000)“高細料含量粉土細砂中CPT 之標定試驗”國立交通大學土木工程系,碩士論文。
    2.張嘉偉(1997)“圓錐貫入試驗在粉砂中之標定”國立交通大學土木工程系,碩士論文。
    3.葉事義(2015)“以邊界應力控制試驗平台探討基樁側推之行為”,國立成功大學土木工程學系,碩士論文
    4.劉全修(2008)“台灣中南部粉土質細砂的壓縮性”國立交通大學土木
    工程學系,碩士論文。
    5.API, R. (2007). 2A-WSD 2007. “Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms–Working Stress Design,American Petroleum Institute. ”
    6.Broms, B. B. (1964). “Lateral resistance of piles in cohesive soils.” J. Soil Mech. Found. Div., 90(2), 123-156.
    7.Byrne, B. (2011), “Foundation Design for Offshore Wind Turbines”, Géotechnique Lecture.
    8.Chang, W. J., Chen, J.F., Ho, H.C., and Chiu, Y.F. (2010), “In Situ Dynamic Model Test for Pile-supported Wharf in Liquefied Sand “, ASTM Geotechnical Testing Journal, Vol. 33/3.
    9.Choo, Y. and Kim, D. (2015). “Experimental Development of the p-y Relationship for Large-Diameter Offshore Monopiles in Sands: Centrifuge Tests.” J. Geotech. Geoenviron. Eng., 10.1061/(ASCE)GT.1943-5606.0001373, 04015058.
    10.Frost, J.D., Park, J.-Y., (2003). “A critical assessment of themoist tamping technique. ” Geotech. Test. J. ASTM 26 (1), 57–70.
    11.Holden, J.G., (1977),“The Calibration of Electrical Penetrometers in Sand,” Norwegian Geotech. Inst., Int. Rep. 52108-2(29pp).
    12.Holden, J.C. (1991). “History of the first six CRB calibration chambers.” Proceedings, First International Symposium on Calibration Chamber Testing, Potsdam, New York, editor, A.-B. Huang, Elsevier, New York, 1-12.
    13.Ho, Y.T., Huang, A.B., & Lee, J.T. (2008). “Development of a Chirped/Differential Optical Fiber Bragg Grating Pressure Sensor.” Journal of Measurement Science and Technology (19):6pp, doi:10.1088/0957-0233/19/4/045304
    14.Høeg, K., Dyvik, R., Sandbaekken, G., (2000). “Strength of undisturbed versus reconstituted silt and silty sand specimens.” J. Geotech. Geoenviron. Eng. ASCE 126 (7), 606–617.
    15.Hsu, H.H., and Huang, A.B., (1998) “Development of an Axisymmetric Field Simulator for Cone Penetration Tests in Sand,” ASTM Geotechnical Testing Journal, Vol.21, No.4, pp.348-355.
    16.Huang, A.B., and Hsu, H.H. (2005). “Cone Penetration Tests under Simulated Field Conditions,” Geotechnique, Vol. No.5, pp.345-354.
    17.Huang, A.B., Huang, Y.T., (2007). “Undisturbed sampling and laboratory shearing tests on a sand with various fines content.” Soils Found. 47 (4), 771–781.
    18.Huang, Y.T., Huang, A.B., Kuo, Y.C., Tsai, M.D., (2004). “A laboratory study on the undrained strength of a silty sand from Central Western Taiwan. Soil Dyn.” Earthq. Eng. 24 (9–10), 733–743.
    19.Huang, A.B., Chang, W.J*., Hsu, H.H., Huang, Y.J., (2015). “A mist pluviation method for reconstituting silty sand specimens.” Engineering Geology, 188, pp. 1-9.
    20.Ishihara, K., (1993). “Liquefaction and flow failure during earthquakes.” Geotechnique 43 (3), 351–415.
    21.Kuerbis, R., and Vaid, V.P. (1988). “Sand sample preparation - the slurry
    deposition method.” Soil and Foundations 28(4): 107-118.
    22.Lambe, T.W., (1951). “Soil Testing for Engineers.” John Willy & Sons, Inc., New York.
    23.Lee, J., Paik, K., Kim, D., and Park, D. (2012). “Estimation of ultimate lateral load capacity of piles in sands using calibration chamber tests.”Geotech. Test. J., 35(4), 1–12.
    24.Lin, H., Ni, L., Suleiman, M., and Raich, A. (2015). “Interaction between Laterally Loaded Pile and Surrounding Soil.” J. Geotech. Geoenviron. Eng., 141(4), 04014119.
    25.Lo Presti, D., Pedroni, S., Crippa, V., (1992). “Maximum dry density of cohesionless soils by pluviation and by ASTM D 4253-83: a comparative study.” Geotech. Test. J. ASTM 15 (2), 180–189.
    26.McClelland B., and Focht J. A. Jr., (1958). “Soil Modulus for Laterally Loaded Piles.Transactions.” ASCE 123: pp. 1049-1086.
    27.Rankine, W. M. J. (1857), “On Stability of Loose Earth.” Philosophic Transactions of Royal Society, London, Part Ι, pp.9-27.
    28.Reese, L.C., Cox, W.R., and Koop, F.D., (1974), “Analysis of Laterally Loaded in Sand, Proceedings.” Six Annual OTC, Vol 2. Paper No. 2080, Houston, Texas.
    29.Salgado, R., Mitchell, J.K., and Jamiolkowski, M. (1998), “Calibration chamber size effects on penetration resistance in sand,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 124, No. 9, pp.878-888.
    30.Smith, T. D. (1987). “Pile horizontal modulus values.” J. Geotech. Eng.,
    10.1061/(ASCE)0733-9410(1987)113:9(1040), 1040–1044.
    31.Vaid, Y.P., Sivathayalan, S., Stedman, D., (1999). “Influence of specimen-reconstituting method on the undrained response of sand.” Geotech. Test. J. ASTM 22 (3), 187–195.
    32.Wilson, D. (1998). “Soil-pile-superstructure interaction in liquefying sand
    and soft clay.” Ph.D. dissertation, Univ. of California, Davis, Davis, CA.
    33.Winkler, E. (1867). “Theory of elasticity and strength. Dominicus Prague.”
    34.Yamamuro, J.A., Wood, F.M., (2004). “Effects of depositional method on the undrained behavior and microstructure of sand with silt.” Soil Dyn. Earthq. Eng. 24 (9–10), 751–760.

    下載圖示
    2018-08-09公開
    QR CODE