| 研究生: |
李芳慈 Peng, Fang-Cih |
|---|---|
| 論文名稱: |
再生潤滑油之液滴燃燒特性之研究 Burning Characteristics of Single Droplet from Refined Lubricating Oil |
| 指導教授: |
趙怡欽
Yei-Chin, Chao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2019 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 再生潤滑油 、TG-FTIR 、液滴燃燒 、微爆 、反應動力學 |
| 外文關鍵詞: | refined lubricating oil, TG-FTIR, Droplet combustion, Micro-explosion, Activation energy |
| 相關次數: | 點閱:88 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
廢棄潤滑油是一個都市相當常見的廢棄物,台灣政府自2012年起不再回收廢棄潤滑油,改為全民間機構自行回收收購,廢棄潤滑油可作為燃油取代重油使用。本研究將從幾個基礎方面,討論再生潤滑油的燃燒特性。
熱重分析儀串接傅立葉轉換紅外線光譜儀(TG-FTIR),研究再生潤滑油在溫度控制條件下的變化趨勢,TG-DTG曲線可計算獲得燃燒特性參數,例如引燃溫度、燃燼溫度、可燃性指數、綜合燃燒指數並與重油相比,得知再生潤滑油含有較佳的燃燒性質。FTIR可記錄實驗期間釋放氣體的吸收峰值,判斷對應燃燒溫度時其排放的氣體,得知再生潤滑油所排放的〖CO〗_2、〖SO〗_2、NO都比重油少。
懸掛液滴實驗系統探討再生潤滑油燃燒過程中的微爆現象,再生潤滑油是一個多組份的燃料,在整個受熱過程中持續發生微爆現象,當 液滴受熱環境溫度為600℃時,再生潤滑油滴產生燃燒反應,並形成一個非預混火焰非預混火焰包圍在液滴周圍。再生潤滑油的燃燒特性現象燒特性現象可以使用d^2-Law以一條直線加以近似,得到再生潤滑油A燃燒速率係數K為1.64mm/s,再生潤滑油B燃燒速率係數K為8.74mm/s。
反應動力學可根據TG曲線得出反應的活化能,預測燃燒速率與反應難易程度,使用FWO可以算出再轉化率70%前其較有參考價值,燃燒過程再生潤滑油A的活化能較為穩定在70-90kJ範圍內,在生潤滑油B的活化能較為穩定在80-100kJ範圍內,而重油再轉化率30%時,活化能為79kJ,但在轉化率50%時,其活化能高達162kJ,這表示再生潤滑油是比重油容易進行燃燒反應,且比重油來的穩定。
The combustion behaviors of heavy fuel oil (HFO) and two types of refined lubricating oil (RLO) with different filtration condition are studied using TGA-FTIR analysis. In comparison with HFO, RLO has stronger oxidation rate and lower gas emissions such as 〖CO〗_2, CO, 〖NO〗_x, and 〖SO〗_x.
This study uses the suspended droplet experimental system to explore the thermal behavior, micro-explosion phenomenon and combustion mode of HFO and RLO droplets at different ambient temperatures (300 °C, 400 °C, 500 °C and 600 °C). The combustion rate K for refined lubricating oil A and refined lubricating oil B at 600 °C is 1.64mm/s, 8.74mm/s. The results show that the combustion rate and the micro-explosion performance of the droplets with highly filtered refined lubricating oil B are the best among these oils.
To properly evaluate the thermal stability of combustion rate and thermal kinetics characteristics for HFO and RLO, using TGA curve for analysis.Thermal kinetics characteristics were calculated by Flynn-Wall-Ozawa method. It has more reference value before the conversion rate of 70%. During combustion, the activation energy of recycled lubricant A is stable in the 70-90kJ.The activation energy of recycled lubricant B is stable in the 80-100kJ. At 30% reconversion rate of HFO, the activation energy is 79kJ, but at 50% conversion rate, the activation energy is as high as 162kJ. This means that RLO is easier to burn than HFO and is stable rife compared to HFO.
1. K., L.C., Combustion Physics, in New York: Cambridge University Press,. 2006.
2. Law, C.K., Combustion Physics. 2006, Cambridge: Cambridge University Press.
3. 李嘉文, 生活汙泥裂解油製備及其燃燒特性研究. 國立成功大學 航空太空科學系 , 碩士論文 , , 105.
4. Guerin, T.F., Environmental liability and life-cycle management of used lubricating oils. Journal of Hazardous Materials, 2008. 160(2): p. 256-264.
5. Kanokkantapong, V., et al., Used lubricating oil management options based on life cycle thinking. Resources, Conservation and Recycling, 2009. 53(5): p. 294-299.
6. Singhabhandhu, A. and T. Tezuka, A perspective on incorporation of glycerin purification process in biodiesel plants using waste cooking oil as feedstock. Energy, 2010. 35(6): p. 2493-2504.
7. Singhabhandhu, A. and T. Tezuka, The waste-to-energy framework for integrated multi-waste utilization: Waste cooking oil, waste lubricating oil, and waste plastics. Energy, 2010. 35(6): p. 2544-2551.
8. Hsu, Y.-L. and C. Liu, Evaluation and selection of regeneration of waste lubricating oil technology. Environmental monitoring and assessment, 2011. 176: p. 197-212.
9. 張春光, et al., 廢潤滑油再生技術現狀及行業發展思路. 潤滑油, 2008(02).
10. Kim, S.-S., B.H. Chun, and S.H. Kim, Non-isothermal pyrolysis of waste automobile lubricating oil in a stirred batch reactor. Chemical Engineering Journal, 2003. 93(3): p. 225-231.
11. Kim, Y.S., et al., Tar-formation kinetics and adsorption characteristics of pyrolyzed waste lubricating oil. Journal of Analytical and Applied Pyrolysis, 2003. 70(1): p. 19-33.
12. SH, K., et al., Pyrolysis Kinetics and Characteristics of the Mixtures of Waste Ship Lubricating Oil and Waste Fishing Rope. Korean Journal of Chemical Engineering, 2005. 22: p. 573-578.
13. Fuentes, M.J., et al., Pyrolysis and combustion of waste lubricant oil from diesel cars: Decomposition and pollutants. Journal of Analytical and Applied Pyrolysis, 2007. 79(1): p. 215-226.
14. Patel M. M., G.T.D.a.Y.C.B., Combustion Rates of Lignite Char by TGA, in Fuel. 1988. p. 165-169,.
15. P., V.S.a.G., Physical and Combustion Characterization of Pyrolytic Oils Erived from Biomass Material Upgraded by Catalytic Hydrogenation,, in Fuel. 1994. p. 1810-12,.
16. Liu J. Y., S.S.Y., Xie W. M., Chen T. and Chen M. T., Study on Industrial Sludge Catalytic Combustion by TGA,, in International Conference on Energy and Environment Technology. 2009. p. 849-852.
17. Townshen, A., Principles of Instrumental Analysis: Douglas A. Skoog and Donald M. West, 2nd edn., Saunders College, Philadelphia, 1980, xi + 769 pp., price U.S. $25. Analytica Chimica Acta, 1983. 152: p. 314.
18. Spalding, D.l., The Combustion of Liquid Fuels, in Fuel. 1953. p. 169-185.
19. I., I.V.M.a.N.P., Experimental Investigation of the Combustion Process in Nature and Emulsified Fuels., in NASA TT F-258,. 1965.
20. Wang, C.H.a.L., C. K.,, Microexplosion of Fuel Droplets under High Pressure,, in Combustion and Flame. 1985. p. 53-62.
21. Wang, C.-H. and J.-T. Chen, An experimental investigation of the burning characteristics of water-oil emulsions. International Communications in Heat and Mass Transfer, 1996. 23(6): p. 823-834.
22. Tsue, M., et al., Statistical analysis of onset of microexplosion for an emulsion droplet. Symposium (International) on Combustion, 1996. 26(1): p. 1629-1635.
23. Spalding, D.B., The combustion of liquid fuels. Symposium (International) on Combustion, 1953. 4(1): p. 847-864.
24. Villasenor, R. and F. Garcia, An experimental study of the effects of asphaltenes on heavy fuel oil droplet combustion. Fuel, 1999. 78(8): p. 933-944.
25. S. C. A. Lam , A.S., Biodiesel droplet combustion. Journal of KONES, 2006. Vol. 13, No. 2: p. 267--274.
26. Calabria, R., F. Chiariello, and P. Massoli, Combustion fundamentals of pyrolysis oil based fuels. Experimental Thermal and Fluid Science, 2007. 31(5): p. 413-420.
27. Wardana, I.N.G., Combustion characteristics of jatropha oil droplet at various oil temperatures. Fuel, 2010. 89(3): p. 659-664.
28. Hou, S.-S., et al., Microexplosion and ignition of droplets of fuel oil/bio-oil (derived from lauan wood) blends. Fuel, 2013. 113: p. 31-42.
29. Wornat, M.J., B.G. Porter, and N.Y.C. Yang, single Droplet Combustion of Biomass Pyrolysis Oils. Energy & Fuels, 1994. 8(5): p. 1131-1142.
30. Botero, M.L., et al., Synergistic combustion of droplets of ethanol, diesel and biodiesel mixtures. Fuel, 2012. 94: p. 342-347.
31. 趙衛東, et al., 水焦漿燃燒動力學參數求解方法. 中國電機工程學報, 2008. 28(17): p. 6.
32. Ebrahimi-Kahrizsangi, R. and M.H. Abbasi, Evaluation of reliability of Coats-Redfern method for kinetic analysis of non-isothermal TGA. Transactions of Nonferrous Metals Society of China, 2008. 18(1): p. 217-221.
33. A.W.Coats and J.P.Redfern, Kinetic Parameters from Thermogravimetric Data. 1964.
34. C.D.Doyle, Kinetic Analysis of Thermogravimetric Data. 1961: p. 8.
35. Ozawa, T., Kinetic analysis of derivative curves in thermal analysis. Journal of thermal analysis, 1970. 2(3): p. 301-324.
36. Ozawa, T., Estimation of activation energy by isoconversion methods. Thermochimica Acta, 1992. 203: p. 159-165.
37. Rafael, V.-D., Environmental impact of used motor oil, in Science of The Total Environment. 1989. p. 1-23.
38. Vazquez-Duhalt, R., Environmental impact of used motor oil. Science of The Total Environment, 1989. 79(1): p. 1-23.
39. Diego, B., Lubricants and Additives: A Point of View, in Global Risk-Based Management of Chemical Additives. 2011. p. 109-132.
40. Wang Xiangli, N.P., Combustion and emission characteristics of diesel engine fueled with diesel-like fuel from waste lubrication oil, in Energy Conversion and Management. 2017. p. 275-283.
41. Kök, M.V., M.A. Varfolomeev, and D.K. Nurgaliev, Crude oil characterization using TGA-DTA, TGA-FTIR and TGA-MS techniques. Journal of Petroleum Science and Engineering, 2017. 154: p. 537-542.
42. Tognotti, L., et al., Measurement of Ignition Temperature of Coal Particles Using a Thermogravimetric Technique. Combustion Science and Technology, 1985. 44: p. 15-28.
43. Crelling, J.C., et al., Combustion characteristics of selected whole coals and macerals. Fuel, 1992. 71(2): p. 151-158.
44. Huang, X., et al., Combustion Characteristics of Fine- and Micro-pulverized Coal in the Mixture of O2/CO2. Energy & Fuels, 2008. 22(6): p. 3756-3762.
45. Lu, J.-J. and W.-H. Chen, Investigation on the ignition and burnout temperatures of bamboo and sugarcane bagasse by thermogravimetric analysis. Applied Energy, 2015. 160: p. 49-57.
46. 陳建原 , 孫., 煤的揮發分釋放特性指數及燃燒特性指數的確定. 1987.
47. Essenhigh, R.H., M.K. Misra, and D.W. Shaw, Ignition of coal particles: A review. Combustion and Flame, 1989. 77(1): p. 3-30.
48. Otero, M., et al., Co-combustion of different sewage sludge and coal: A non-isothermal thermogravimetric kinetic analysis. Bioresource Technology, 2008. 99(14): p. 6311-6319.
校內:2024-01-01公開