| 研究生: |
楊士賢 Yang, Shih-Hsien |
|---|---|
| 論文名稱: |
基於小波之新型影像解析度強化演算法 A Novel Wavelet-Based Image Resolution Enhancement Algorithm |
| 指導教授: |
戴顯權
Tai, Shen-Chuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 50 |
| 中文關鍵詞: | 影像解析度 、小波轉換 |
| 外文關鍵詞: | wavelet transform, image resolution |
| 相關次數: | 點閱:59 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
小波轉換及其理論為近幾年來相當熱門的研究主題之一,目前小波轉換已被廣泛地應用在信號處理、影像和音訊處理、通信系統以及應用數學等不同的研究領域。由於小波轉換具有極佳的時域−頻域分析功能以及多重解析的特性,因此非常適合運用在影像解析度強化上。本論文研究主題為小波轉換在影像解析度強化處理之應用,並針對影像解析度強化提出一套以小波轉換為基礎的基本處理架構。
本論文提出一個在小波域上之影像解析度強化演算法,用來估算小波域上的高頻係數。此方法根據小波係數在臨近係數之間的關係使用了一個模形函式,且利用未向下取樣之離散小波轉換去估算未知的詳細係數。實驗結果顯示,此方法的表現不管在主觀視覺或客觀數據都優於其他傳統影像插補演算法。
Wavelet transform and its theory is one of the most exciting developments in the last decade. In fact, the wavelet transform has been developed independently for various fields such as signal processing, image processing, audio processing, communication, and applied mathematics. Due to the wavelet representation has characteristics of the efficient time-frequency localization and the multi-resolution analysis, the wavelet transforms are suitable for processing the image resolution enhancement. Therefore, this thesis focuses on the study of wavelet-based image resolution enhancement and proposes a framework of image resolution enhancement using wavelet transform.
This thesis proposed a wavelet-domain image resolution enhancement algorithm which is based on the estimation of detail wavelet coefficients at high resolution scales. The method exploits shape function according to wavelet coefficient correlation in a local neighborhood sense and employs undecimated discrete wavelet transform to estimate the unknown detail coefficients. Results show that the proposed method is considerably superior to conventional image interpolation techniques, both in objective and subjective terms.
[1] Chang, S.G., Cvetkovic, Z., and Vetterli, M.: ‘Resolution enhancement of images using wavelet transform extrema extrapolation’. Proc. ICASSP95, May 1995, 4, pp. 2379–2382.
[2] Carey, W.K., Chuang, D.B., and Hemami, S.S.: ‘Regularity preserving image interpolation’, IEEE Trans. Image Process., 1999, 8, (9), pp. 1295–1297
[3] Kinebuchi, K., Muresan, D.D., and Parks, T.W.: ‘Image interpolation using wavelet-based hidden Markov trees’. Proc. ICASSP01, May 2001, 3, pp. 7–11
[4] Crouse, M.S., Nowak, R.D., and Baraniuk, R.G.: ‘Wavelet-based statistical signal processing using hidden Markov models’, IEEE Trans. Signal Process., 1998, 46, (4), pp. 886–902
[5] Zhao, S., Han, H., and Peng, S.: ‘Wavelet domain HMT-based image superresolution’. Proc. ICIP03, Sept. 2003, 2, pp. 933–936
[6] Nguyen, N.: ‘Numerical techniques for image superresolution’. PhD Thesis, Stanford University, 2000
[7] Nguyen, N., and Milanfar, P.: ‘An efficient wavelet-based algorithm for image superresolution’. Proc. ICIP00, Sept. 2000 2,pp. 351–354
[8] Ford, C., and Etter, D.M.: ‘Wavelet basis reconstruction of nonuniformly sampled data’, IEEE Trans. Circuits Syst., 1998, 45,(8), pp. 1165–1168
[9] Mitevski, S., and Bogdanov, M.: ‘Application of multiresolutional basis fitting reconstruction in image magnifying’. Proc. 9th Telecommunications Forum TELFOR 2001, Nov. 2001, pp. 565–568
[10] A. K. Jain, Fundamentals of Digital Image Processing, Englewood Cliffs, NJ: Prentice-Hall, 1989.
[11] M. Unser, A. Aldroubi, and M. Eden, “Enlargement or reduction of digital images with minimum loss of information,” IEEE Trans. Image Processing, vol. 4, pp. 247–257, Mar. 1995.
[12] K. Xue, A. Williams, and E. Walowit, “And edge-restricted spatial interpolation algorithm,” J. Electron. Imag., vol. 1, pp. 152–161, Apr. 1992.
[13] V. R. Algazi, G. E. Ford, and R. Potharlanka, “Directional interpolation of images based on visual properties and rank order filtering,” in Proc. ICASSP’91, pp. 3005–3008.
[14] S. K. Mitra, H. Li, I. Lin, and T. Yu, “A new class of nonlinear filters for image enhancement,” in Proc. ICASSP’91, pp. 2525–2528.
[15] H. Greenspan and C. H. Anderson, “Image enhancement by nonlinear extrapolation in frequency space,” SPIE Image Video Processing II, vol. 2182, pp. 2–13, 1994.
[16] R. Schultz and R. Stevenson, “A bayesian approach to image expansion for improved definition,” IEEE Trans. Image Processing, vol. 3, pp. 233–242, May 1994.
[17] A. Pentland, “Fractal-based descriptions of natural scenes,” IEEE Trans. Pattern Anal. Machine Intell., vol. 6, pp. 661–674, Nov. 1984.
[18] O. Rioul, “Simple regularity criteria for subdivision schemes,” SIAM J. Math. Anal., vol. 23, pp. 1544–1576, Nov. 1992.
[19] S. G. Chang, Z. Cvetkovi´c, and M. Vetterli, “Resolution enhancement of images using wavelet transform extrema extrapolation,” in Proc. ICASSP’95, pp. 2379–2382.
[20] M. S. Crouse, R. D. Nowak, and R. G. Baraniuk, “Wavelet-Based Signal Processing Using Hidden Markov Models,” IEEE Transactions on Signal Processing (Special Issue on Wavelets and Filterbanks), April 1998,886-902.
[21] H. Choi and R. G. Baraniuk, “Image Segmentation Using Wavelet Domain Classification,” Proc. SPIE Technical Conference on Mathematical Modeling, Bayesian Estimation, and Inverse Problems, April 1998.
[22] COIFMAN, R.R., and DONOHO, D.: ‘Translation-invariant de-noising’ in ‘Wavelets and Statistics, vol. 103 of Lecture Notes in Statistics’ (Springer-Verlag, New York, 1995), pp. 125-150
[23] NASON, G.P., and SILVERMAN, B.w.: ‘Stationary wavelet transform and some statistical applications’. Technical Report, Department of Mathematics, University of Bristol, Bristol, UK, 1995
[24] BURRUS, c.s., GOPINATH, R.A., and GUO, H.: ‘Introduction to wavelets and wavelet transforms’ (Prentice Hall, Englewood Cliffs, NJ, 1998)
[25] A. Temizel and T. Vlachos, “Wavelet Domain Image Resotion Enhancement Using Cycle-Spinning”, IEE Electronics Letters, vol. 41, no. 3, Feb. 2005