簡易檢索 / 詳目顯示

研究生: 孫泰農
Sun, Tai-Nong
論文名稱: 鎳基690合金於高溫高速荷載下之動態塑變行為與顯微結構分析
Dynamic Plastic Deformation Behaviour and Microstructrual Characteristics of Inconel 690 Alloy Subjected to High Temperature and High Strain Rate Loading Conditions
指導教授: 李偉賢
Lee, Woei-Shyan
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 134
中文關鍵詞: 鎳基690合金霍普金森高速撞擊試驗機絕熱剪切帶差排雙晶
外文關鍵詞: dislocation, twin, Inconel 690, adiabatic shear band, split-Hopkinson bar, strain rate
相關次數: 點閱:110下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文之研究主要是利用霍普金森高速撞擊試驗機,並配合加熱裝置,來探討鎳基690合金於高溫高速撞擊下之塑性變形行為。實驗條件為測試溫度從25℃到900℃、其應變速率為2300s-1到8300s-1,再將實驗所得到數據和微觀結果(OM、SEM、TEM)做分析,可以用來釐清應變速率和溫度對動態機械特性及相對微觀組織變化之影響,而最後再引用一合適之材料構成方程式,來描述鎳基690合金的高溫高速之塑變行為,以做為工程模擬與分析之用。
    由實驗的數據分析可以知道,鎳基690合金的機械性質受到應變速率、溫度和應變量之影響甚鉅,其在相同溫度條件下,其塑流應力值、應變速率敏感性係數皆會隨著應變速率之增加而上升,而熱活化體積及加工硬化係數則有相反之趨勢;而在同在一個應變速率下,其塑流應力值、應變速率敏感性係數、加工硬化係數則隨著溫度之增加而下降,而溫度敏感性係數與熱活化體積則隨溫度的上升而增加。最後,藉由Zerilli-Armstrong模式之構成方程式,再加入理論溫升量之修正項,其可以很準確的用來描述鎳基690合金於高溫高速撞擊下之塑變行為。
    從破壞形貌觀察,可以知道材料若受到高速衝擊時,會有絕熱剪切帶的產生,而且隨著溫度的上升,其剪切帶的寬度有變大的趨勢,而且可以發現在剪切帶裡有微空孔,並藉由空孔之聚集連結而造成材料之破壞發生;在破斷面觀察上,可以發現到主要是以韌窩組織的形貌分佈,故屬於延性破壞,而韌窩形貌會隨著應變速率的變化而有不同的改變。從TEM之觀察分析,在相同溫度的條件時,隨著應變速率之增加,其差排、雙晶密度也跟著增加。在相同應變速率條件時,隨著溫度上升,其差排胞之尺寸會隨著增加,而差排密度則會隨著減少,而雙晶在高溫條件時都沒有出現。若分別對差排和雙晶作定量分析,可以得知道其差排密度和雙晶密度分別和塑流應力值及應變速率呈線性之關係。

    A split-Hopkinson bar is used to investigate the plastic deformation behaviour of Inconel 690 super alloy subjected to high temperature and high strain rate loading conditions. Mechanical testing is performed under strain rates ranging from 2300s-1 to 8300s-1 and temperatures ranging from 25℃ to 900℃. OM, SEM and TEM microscopy techniques are used to analyze the fracture and microstructure characteristics of the deformed specimens to determine the relation between mechanical and microstructural properties. Experimental results indicate that temperature, strain and strain rate influence material mechanical properties. At constant temperature, flow stress and strain rate sensitivity increase with increasing strain rate, but activation volume and work hardening coefficient decrease. Under constant strain rate, flow stress, strain rate sensitivity and work hardening coefficient decrease with increasing temperature, but activation volume and temperature sensitivity increase. From fractographic analysis, we find fracture occurs after shear band formation. We also find dimple characteristics on fracture surfaces. Microscopy shows dislocation and twinning, with dislocation and twinning density increasing with increasing strain rate and work hardening stress, but decreasing with increasing temperature. The Zerilli-Armstrong constitutive equation with the experimentally determined specific material parameters successfully describes the flow behaviour of Inconel 690 super alloy for the tested conditions.

    中文摘要 I ABSTRACT II 誌謝 III 總目錄 IV 表目錄 VIII 圖目錄 X 符號說明 XVI 第一章 前言 1 第二章 理論與文獻回顧 4 2-1鎳基690合金性質介紹 4 2-1-1鎳基合金的分類 4 2-1-2鎳基合金的強化機構 5 2-1-3鎳基690合金 6 2-2一維波傳理論 11 2-3霍普金森桿原理 13 2-4材料塑性變形行為之特性 16 2-5塑性變形之機械測試類別 18 2-6圓柱壓縮試驗法 20 2-7材料變形構成方程式 20 第三章 實驗方法與步驟 39 3-1實驗流程 39 3-2實驗儀器與設備 39 3-2-1霍普金森動態撞擊試驗機 39 3-2-2訊號處理裝置 40 3-2-3 加熱裝置 40 3-2-4壓縮試驗機 41 3-2-5光學顯微鏡(OM) 41 3-2-6掃瞄式電子顯微鏡(SEM) 41 3-2-7穿透式電子顯微鏡(TEM) 41 3-2-8雙噴射式電解拋光機 42 3-2-9鑽石刀片試片切割機 42 3-2-10微硬度試驗機 42 3-3實驗方法與步驟 42 3-3-1壓縮試件備製 42 3-3-2動態衝擊實驗 43 3-3-3靜態壓縮試驗 44 3-3-4試件金相之觀察(OM) 45 3-3-5破斷面之觀察(SEM) 45 3-3-6微硬度實驗 45 3-3-7穿透式電子顯微鏡(TEM) 46 第四章 實驗結果與討論 50 4-1 應力-應變曲線圖之討論 50 4-2微硬度分析 51 4-3加工硬化率之探討 52 4-4應變速率效應 54 4-5熱活化體積 56 4-6溫度敏感性係數 57 4-7理論溫升量之探討 58 4-8材料構成方程式 60 4-9微觀組織 61 4-9-1金相組織分析 61 4-9-2破壞特微分析 63 4-9-3 TEM顯微結構分析 64 第五章 結論 125 參考文獻 127

    1. H. Kolsky, “An Investigation of the Mechanical Properties of Materials at Very High Rates of Loading”, Proceedings of the Physical Society, Vol. 62. pp. 676-699, 1949.

    2. B. M. Butcher and C. H. Karnes, "Strain Rate Effects in Metals", Journal of Applied Physics, Vol. 37, pp. 402-411, 1964.

    3. F. E. Hauser, "Techniques for Measuring Stress-Strain Relations at High Strain Rates", Experimental Mechanics, Vol. 6, pp. 395-402, 1966.

    4. Y. Leroy and M. Ortiz, In Mechanical Properties of Materials at High Rates of Strain, (ed. J. Harding), pp. 257-265, 1989.

    5. D. J. Steinberg, S. G. Cochran and N. W. Guinan, "A Constitutive Model for Metals Applicable at High Strain Rate", Journal of Applied Physics, Vol. 51, No. 3, pp. 1498-1504, 1980.

    6. W. L. Mankins and S. Lamb, "Nickel and Nickel Alloys", 10th Ed., ASM International, UAS, pp. 428-445, 1992.

    7. G. P. Yu and H. C. Tao, "The Relation between the Resistance of IGA and IGSCC and the Chromium Depletion of Alloy 690", Corrosion, Vol. 46, No. 5, pp. 391-401, 1990.

    8. R. F. Decker and E. G. Richards, "Strengthening Mechanisms in Nickel-base Superalloys", International Nickel Limited Technical Publication Paper HT 26, 1967, Inco Power Conference, Switzweland.

    9. J. J. Kai, G. P. Yu, C. H. Tsai, M. N. Liu and S. C. Yao, "The Effects of Heat Treatment on the Chromium Depletion, Precipitate Evolution, and Corrosion Resistance of Inconel Alloy 690", Metallurgical Transaction A, Vol. 20A, pp. 2057-2067, 1989.

    10. K. Stiller, J. O. Nilsson, and K. Norring, "Structure, Chemistry, and Stress Corrosion Cracking of Grain Boundaries in Alloys 600 and 690", Metallurgical and Material Transactions A, Vol. 27A, pp. 327-341, 1996.

    11. A. J. Sedriks, J. W. Schultz and M. A. Cordovi, "INCONEL Alloy 690 - A New Corrosion-Resistant Material", Corrosion Engineering (Japan Society of Corrosion Engineering) Vol. 28, No. 2, pp. 82-95, 1979.

    12. V. Venkatesh and H. J. Rack, "Elevated Temperature Hardening of Inconel 690", Mechanics of Materials, Vol. 30, pp. 69-81, 1998.

    13. P. Ludwik and Z. Vereins deut. Ing., 71, pp. 1532-1538, 1927.

    14. G. R. Johnson, W. H. Cook, in: Proc. 7th Intern. Symp. on Ballistics, The Hague, Netherlands, pp. 541-547, 1983.

    15. F. J. Zerilli and R. W. Armstrong, "Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations", Journal of Applied Physics, Vol. 61, pp. 1816-1825, 1987.

    16. W. S. Lee and C. F. Lin, "Plastic Deformation and Fracture Behaviour of Ti-6Al-4V Alloy Loaded with High Strain Rate under Various Temperatures", Materials Science and Engineering A, Vol. A241, pp. 48-59, 1998.

    17. W. S. Lee, G. L. Xiea and C. F. Lin, "The Strain Rate and Temperature Dependence of the Dynamic Impact Response of Tungsten Composite", Materials Science and Engineering A, Vol. A256, pp. 256-267, 1998.

    18. M. S. J. Hashmi, A. M. S. Hamouda, "Development of a One-Dimensional Constitutive Equation for Metals Subjected to High Strain Rat and Large Strain", Journal of Strain Analysis for Engineering Design, Vol. 29, pp. 117-127, 1994.

    19. H. Zhao and G. Gray, "The Testing and Behaviour Modelling of Sheet Metals at Strain Rates", Materials Science and Engineering A, Vol. A207, pp. 46-50, 1996.

    20. K. P. Staudhammer and L. E. Murr, “The Effect of Prior Deformation on the Residual Microstructure of Explosively Deformed Stainless Steel”, Materials Science and Engineering A, Vol. A44, pp. 97-113, 1980.

    21. C. Y. Chiem and J. Duffy, “Strain Rate History Effects and Observations of Dislocation Substructure in Aluminum Single Crystals Following Dynamic Deformation”, Materials Science and Engineering A, Vol. A57, pp. 233-247, 1983.

    22. W. S. Lee and C. Y. Chiem, “The Influence of Dynamic Shear Loading on Plastic Deformation and Microstructure of Tungesten Single Crytals”, Materials Science and Engineering A, Vol. A187, pp. 43-50, 1994.

    23. W. S. Lee and C. F. Lin, “High Temperature Deformation Behaviour of Ti-6Al-4V Alloy Evaluated by High Strain Rate Compression Tests”, Journal of Materials Processing Technology, Vol.75, pp. 127-136, 1998.

    24. M. A. Meyers, "Defect Generation in Shock-Wave Deformation", Shock Waves and High-Strain-Rate Phenomena in Metals, M. A. Meyers et al., eds., Plenum Press, New York, pp. 487-560, 1981.

    25. W. S. Lee and C. F. Lin, "Effects of Prestrainning on the Impact Response and Twinning Structure of 304L Stainless Steel", Materials Transactions, JIM, Vol. 42, pp. 2080-2086, 2001.

    26. J. P. Joule, Phil. Trans. Royal Soc., London, Vol. 149, pp. 91-131, 1859.

    27. J. Duffy, Y. C. Chi, “On the Measurement of Local Strain and Temperature during the Formation of Adiabatic Shear Bands”, Materials Science and Engineering, Vol. A157, pp. 195-210, 1992.

    28. S. C. Liao, J. Duffy, “Adiabatic Shear Bands in A Ti-6Al-4V Titanium Alloy”, Journal of the Mechanics and Physics of Solids, Vol. 46, No. 11, pp. 2201-2231, 1998.

    29. K. A. Hartley, J. Duffy and R. H. Hawley, “Measurement of the Temperature Profile during Shear Band Formation in Steels Deforming at High Strain Rates”, Journal of the Mechanics and Physics of Solids, Vol. 35, No. 3, pp. 283-301, 1987.

    30. Marchand, J. Duffy, “An Experimental Study of the Formation Process of Adiabatic Shear Bands in a Structural Steel”, Journal of the Mechanical Physical Solids, Vol. 36, No. 3, pp. 251-283, 1988.

    31. Y. B. XU, Y. L. Bai, Q. Xue and L. T. Shen, “Formation, Microstructure and Development of the Localized Shear Deformation in Low-carbon Steels”, Acta Materialia, Vol. 44, No. 5, pp. 1917-1926, 1996.

    32. 陳永璋,“鎳基超合金之材料相關知識”,銲接園地,頁31-40,民國89年。

    33. 陳永璋、陳建銘,“鎳基合金之特性與其銲接方法”,頁13-26,民國89年。

    34. “Inconel Alloy 690”, Huntington Alloys, Inc., Huntington, WV, 1985.

    35. U. S. Lindholm and L. W. Yeakly, “High Strain Rate Tension and Compression”, Experimental Mechanics, Vol. 3, pp. 81-88, 1983.

    36. M. A. Meyers, Elastic Waves, “Dynamics Behavior of Materials”, Jhon Wiely & Son, pp. 23-65, 1994.

    37. 林奇鋒,“鈦合金(Ti-6Al-4V)之高速高溫變形行為分析”,國立成功大學機械工程研究所碩士論文,頁5-23,1996.

    38. J. D. Campbell, “Dynamic Plasticity-Macrosopic and Microscopic Aspects”, Materials Science and Engineering, Vol. 12, pp. 3-21, 1973.

    39. D. Klahn, A. K. Mukherjee and J. E. Dorn, Proceedings of the 2nd International Conference on the Strength of Metals and Alloys, Vol. III, ASM, pp. 951, 1970.

    40. J. D. Campbell and W. G. Ferguson, “The Temperature and Strain-Rate Dependence of the Shear Strength of Mild Steel”, The Philosophical Magazine, Vol. 21, pp. 63-82, 1970.

    41. U. S. Lindholm and L. M. Yeakly, “Dynamic Deformation of Single and Polycrystalline Aluminum”, Journal of Mechanics and Physics of Solids, Vol. 13, pp. 41-49, 1965.

    42. W. G. Ferguson, A. Kumar and J. E. Dorn, “Dislocation Damping in Aluminum at High Strain Rates”, Journal of Applied Physics, Vol. 38, No. 4, pp. 1863-1869, 1967.

    43. J. D. Campbell and A. R. Dowling, “Behaviour of Materials Subjected to Dynamic Incremental Shear Loading”, Journal of the Mechanics and Physics of Solids, Vol. 18, pp. 43-63, 1970.

    44. Y. Bai and B. Dodd: Adiabatic Shear Localization, Pergamon Press, Oxford, pp. 1-3, 1992.

    45. R. D. Curran, L. Seaman and D. A. Shockey, “Linking Dynamic Fracture to Microstructural Process, Shock Wave and High-Strain-Rate Phenomena in Metal: Concepts and Applications”, pp. 22-26, 1980.

    46. U. S. Lindholm, in Techniques in Metals Research, Vol. 5, Part1, R. F. Bunshah (ed.), Wiley-Interscience, New York, pp. 199, 1971.

    47. G. E. Dieter, Workability Testing Techniques, Metals Park, Oh: ASM, pp. 57-59, 1984.

    48. M. L. Lovato, and M. G. Stout, “Compression Testing Techniques to Determine the Stress/Strain Behaviour of Metals Subject to Finite Deformation”, Metallurgical Transaction A, Vol. 23A, pp. 935-951, 1992.

    49. J. C. Gelin, J. Oudin, and Y. Ravalard, “Determination of the Flow Stress-Strain Curve for Metals Form Axisymmeetric upsetting”, Journal of Mechanical Working Technology, Vol. 5, pp. 297-308, 1981.

    50. Riqiang Liang, Akhtar S. Khan, “A Critical Review of Experimental Results and Constitutive Models for BCC and FCC Metals over a Wide Range of Strain Rates and Temperature.” International Journal of Plasticity, Vol. 15, pp. 963-980, 1999.

    51. W. Johnson, Impact Strength of Material, Edward Arnold, pp. 134-135, 1972.

    52. L. E. Malvern, Journal of Applied Mechanics, Vol. 18, pp. 261-281, 1951.

    53. J. D. Campbell, A. M. Eleiche, amd M. C. C. Tsao, “Fundamental Aspects of Structural Alloy Design”, Plenum Publishing Corp. New York, pp. 545-563, 1977.

    54. J. Duffy, Proc. Workshop on Shear Localization, Brown Univ. Report MRL-E-127, pp. 19-29, 1981.

    55. H. Kobayashi and B. Dodd, “A Numerical Analysis for the Formation of Adiabatic Shear Bands Including Void Nucleation and Growth”, International Journal of Impact Engineering, Vol. 8, pp. 1-13, 1989.

    56. F. J. Zerilli and R. W. Armstrong, “Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations”, Journal of Applied Physics, Vol. 61, pp. 1816-1825, 1987.

    57. F. J. Zerilli and R. W. Armstrong, “The Effect of Dislocation Drag on the Stress-Strain Behavior of F.C.C Metals”, Acta Metallurgica et Materialia, Vol. 40, No. 8, pp. 1803-1808, 1992.

    58. F. J. Zerilli and R. W. Armstrong, “Constitutive Equation for HCP Meatls and High Strength Alloy Steels”, High strain rate effects on polymer, Metal and Ceramic Matrix Composites and Other Advanced Materials, AD-Vol. 48, pp. 121-126, ASME 1995.

    59. R. W. Klopp, R. J. Clifton and T. G. Shawki, Pressure Shear Impact and Dynamic Viscoplastic Response of Metals, Mechanics of Materials: an International Journal, Vol. 4, pp. 375-385, 1985.

    60. M. Zhou, A. Needleman and R. J. Clifton, “Finite Element Simulations of Shear Localization in Plate Impact”, Journal of the Mechanics and Physics of Solids, Vol. 42, pp. 423-458, 1994.

    61. W. S. Lee, C. F. Lin, "Impact Properties and Microstructure Evolution of 304L Stainless-Steel", Materials Science and Engineering A, A308, pp. 124-135, 2001.

    62. G. E. Dieter, “Thermally Activated Deformation”, Mechanical Metallurgy, pp. 310-315, 1988.

    63. H. N. Azari, G. S. Murty and G. S. Upadhyana, “High Temperature Deformation of Rapidly Solidified 7091 Powder Metallrugy Aluminum Alloy”, Materials Science and Technology, Vol. 9, No. 8, pp. 686-690, 1993.

    64. Emin Bayraktar and Sabri Altintas, “Some Problems in Steel Sheet Forming Processes”, Journal of Materials Processing Technology, Vol. 80-81, pp. 83-89, 1998.

    65. T. M. Angeliu and G. S. Was, “Behavior of Grain Boundary Chemistry and Precipitates upon Thermal Treatemnt of Controlled Pruity Alloy 690”, Metallurgical Transaction A, Vol. 21A, pp. 2097-2107, 1990.

    66. M. E. Backman, S. A. Schulz, J. C. Schulz and J. K. Pringle, “Scaling Rules for Adiabatic Shear,” in Metallurgical Applications of Shock Wave and High-Strain-Rate Phenomena (eds. L. E. Murr, K. P. Staudhammer and M. A. Meyers) pp. 675-688, Marcel Dekker Inc., New York, 1986.

    67. M. A Meryers, Mechanical Metallurgy Principles and Applications, Prentice-Hall, pp. 284-289, 1984.

    68. D. C. Ludwigson, “Modified Stress-Strain Relation for F.C.C. Metals and Alloys”, Metallurgical Transaction, Vol. 2, pp. 2825-2828, 1971.

    69. R. K. Ham, “The Determinatin of Dislocation Densities in Thin Films”, The Philosophical Magazine, Vol. 6, pp. 1183-1184, 1961.

    下載圖示 校內:立即公開
    校外:2003-07-04公開
    QR CODE