| 研究生: |
翁文寅 Weng, Wen-Yin |
|---|---|
| 論文名稱: |
鎵金屬相關半導體之成長及其紫外光檢測器之研製 The Growth of Ga-related Semiconductors and their Application for UV Sensor Devices |
| 指導教授: |
張守進
Chang, Shoou-Jinn |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 152 |
| 中文關鍵詞: | 氮化鎵 、氧化鎵 、紫外光檢測器 |
| 外文關鍵詞: | GaN, Ga2O3, UV Photodetectors |
| 相關次數: | 點閱:136 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要著重在鎵系列半導體,包含氮化鎵與氧化鎵之成長,並且研製和分析氮化鎵與氧化鎵系列紫外光檢測器。
首先在氮化鎵系列紫外光檢測器方面,我們應用氮化鋁銦覆蓋層或插入層來製作氮化鎵光檢測器。所成長的氮化鋁銦薄膜的鋁含量被控制在17-18%,這樣的氮化鋁銦薄膜其晶格常數與氮化鎵匹配。與傳統的的蕭基能障光檢測器相比,藉由加入覆蓋層或插入層可以降低暗電流值、增加紫外光與可見光的拒斥比及紫外光檢測率。這樣的結果可以歸因於覆蓋層可以提供一個較大與較厚的蕭基能障,且對氮化鎵的表面形態有鈍化的作用,對於插入層的氮化鎵光檢測器而言,插入層可以有效的阻擋差排缺陷延伸至氮化鎵表面。在-5V的偏壓下,具有氮化鋁銦覆蓋層及具有氮化鋁銦插入層的光檢測器之拒斥比分別為4244與2874。其中也發現傳統的光檢器,具有氮化鋁銦覆蓋層及具有氮化鋁銦插入層的光檢測器之檢測度分別為1.12×109, 4.42×1011 與 9.53×1010 cmHz0.5W-1。
在氧化鎵系列紫外光檢測器研製方面,我們使用爐管熱氧化的方法於氮化鎵磊晶薄膜上成長氧化鎵薄膜。從X光繞射分析中,1000、1025、1050與1100℃成長的氧化鎵薄膜的半高全寬分別為0.36、 0.33、0.31與0.29度。隨著成長溫度增加,氧化鎵薄膜的品質變的較好。在260nm的光照與-5V的偏壓下,1000、1025、1050與1100℃成長的氧化鎵薄膜所組裝的檢測器其光響應值分別為0.453, 0.182, 0.036與0.039 A/W。同時也發現所有組裝的氧化鎵檢測器其紫外光對可見光的拒斥比皆非常大,其中,1000℃成長的氧化鎵薄膜所組裝的檢測器其拒斥比達六個數量級。同時我們也組裝了氧化鎵/氮化鎵異質結構之solar-blind與visible-blind雙帶紫外光檢測器。藉由簡單的改變操作偏壓,我們能夠控制半導體的空乏層深度,因此能夠轉換solar-blind或visible-blind的操作模式。為了偵測更短波長的真空紫外光,我們也使用氮化鋁鎵磊晶薄膜熱氧化成長氧化鋁鎵,同時組裝氧化鋁鎵真空紫外光檢測器。所組裝的氧化鋁鎵真空紫外光檢測器其截止波長為220nm。在-1V的偏壓與220nm的光照下所量測到的光響應值為0.052 A/W,對應到30%的外部量子效率,同時紫外光與可見光拒斥比達到四個數量級。這樣的結果說明了所組裝的真空紫外光檢測器的實用性。
基於上述的結果,我們進一步使用vapor-liquid-solid方法成長單斜氧化鎵奈米線並組裝氧化鎵奈米線的solar-blind光檢測器。氧化鎵奈米線的平均長度與直徑隨著成長溫度增加而增加。所組裝的氧化鎵奈米線紫外光檢測器其截止波長為255nm。在10V的偏壓與255nm的光照下所量測到的光響應值為0.8 mA/W。在5V的偏壓下,雜訊等效功率與檢測度分別為7.63×10-10 W 與8.69×109 cmHz0.5W-1。同時,我們也組裝氮化鎵奈米線紫外光檢測器。透過氮化反應,我們成功的將氧化鎵奈米線氮化成氮化鎵奈米線。與傳統的薄膜式氮化鎵光檢測器相比,氮化鎵奈米線光檢測器之光電流比薄膜式光檢器的光電流大一千倍。在5V的偏壓與360nm的光照下,所量測到氮化鎵奈米線光檢測器與薄膜式氮化鎵光檢測器的光響應值分別為70.4 與 0.12 A/W。同時,氮化鎵奈米線光檢測器的紫外光與可見光拒斥比也比薄膜式氮化鎵光檢測器的拒斥比大。這樣的結果也說明所組裝的氮化鎵奈米線紫外光檢測器,有好的實用性。
The main goal of this dissertation is the fabrication and analysis of GaN and Ga2O3-based ultraviolet (UV) photodetectors (PDs).
First, we apply in-suit grown AlInN cap layer or intermediate layer to the fabrication of the GaN-based PDs. The AlInN films were grown lattice matched to GaN with an indium content of ~17-18%. Compared with conventional Schottky barrier PDs without AlInN cap layer or intermediate layer, it was found that we can achieve significantly much smaller dark current, larger UV-to-visible rejection ratio and larger normalized detectivity by inserting the AlInN cap layer or intermediate layer. These results could be contributed to the thicker and higher potential barrier and effective surface passivation for the insertion of AlInN cap layer and the effective suppression of threading dislocation by the AlInN intermediate layer. With a -5 V reverse bias, it was found that the UV-to-visible rejection ratio were 4244 and 2874 for PDs with a semi-insulating AlInN cap layer and intermediate layer, respectively. With a -5 V reverse bias, it was also found that normalized detectivity for conversional PD, PDs with AlInN cap layer or intermediate layer were 1.12×109, 4.42×1011 and 9.53×1010 cmHz0.5W-1, respectively.
On the part of Ga2O3 UV PDs, we report the growth of β-Ga2O3 thin films by furnace oxidation of GaN epitaxial layer at high temperature in oxygen containing ambient. It was found that the full width of half maximum (FWHM) of the β-Ga2O3 films of XRD peak were 0.36, 0.33, 0.31 and 0.29 degree when the grown temperature was 1000, 1025, 1050 and 1100℃, respectively. The FWHM of β-Ga2O3 films grown at low temperature was larger than that at high temperature. Solar-blind β-Ga2O3 PDs was also fabricated by depositing interdigitated contact electrodes. With an incident light wavelength of 260 nm and an applied bias of 5 V, it was found that measured responsivities of the PDs was 0.453, 0.182, 0.036 and 0.039 A/W for the β-Ga2O3 grown at 1000, 1025, 1050 and 1100℃, respectively. It was found that the fabricated PDs exhibits extremely large deep-UV-to-visible rejection ratio. The responsivity measured at 260 nm was 6 orders of magnitude larger than that measured at 400 nm for the β-Ga2O3 PD grown at 1000℃. A β-Ga2O3/GaN hetero-structured solar-blind and visible-blind dual bands PD was also fabricated. It was found that we could control the depletion depth of the device and thus switch the operation mode between solar-blind and visible-blind by simply changing the applied bias. For the detection of vacuum ultraviolet (VUV) light, (AlxGa1-x)2O3 thin films grown by furnace oxidation of Al0.24GaN epitaxial layer have been studied. An (AlxGa1-x)2O3 VUV PD was also fabricated. It was found that cutoff occurred at around 220 nm for the fabricated (AlxGa1-x)2O3 PD. The 0.052 A/W responsivity measured at 220 nm biased at 1 V for the (AlxGa1-x)2O3 PD corresponds to a 30% external quantum efficiency. As we switched the UV excitation on and off, it was found that dynamic response of the (AlxGa1-x)2O3 PD was stable and reproducible with an on/off current contrast ratio of around 103. The responsivity measured at 220 nm was 4 orders of magnitude larger than that measured at 400 nm. The extremely large deep-UV-to-visible rejection ratio and rapidly transient response indicate that the (AlxGa1-x)2O3 PD fabricated in this study is potentially useful for VUV sensing.
Based on the aforementioned, we also grow the β-Ga2O3 nanowires (NWs) by heating the GaN/sapphire template with various temperatures. The β-Ga2O3 NWs were grown with a vapor-liquid-solid mechanism. The average diameter and average length of the nanowires both increased as we increased the growth temperature. Solar-blind β-Ga2O3 NW PDs were also fabricated. Photo-responses of the fabricated PD were flat in the short-wavelength region while sharp cutoff occurred at 255 nm. With an incident light wavelength of 255 nm and an applied bias of 10 V, it was found that measured responsivity of the PD was 0.8 mA/W. It was also found that Noise equivalent power (NEP) and normalized detectivity (D*) were 7.63×10-10 W and 8.69×109 cmHz0.5W-1, respectively, when the voltage biased at 5 V. We also fabricate the GaN NWs PDs. To fabricate GaN NWs PDs, the β-Ga2O3 NWs were converted to GaN NWs through ammonification. Compared with conventional two-dimensional (2D) GaN PD, it was found that we could achieve a 1000 times larger photocurrent from the GaN NW PD. With an incident light wavelength of 360 nm and a 5 V applied bias, it was found that measured responsivities were 70.4 and 0.12 A/W for the GaN NW PD and the conventional 2D GaN PD, respectively. It was also found that dynamic response of the GaN NW PD was stable and reproducible with an on/off current contrast ratio of around 1000. Furthermore, UV-to-visible rejection ratio observed from the GaN NW PD was also larger, as compared to conventional 2D GaN PD.
Reference in chapter 1
[1] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, Hai Lu, William J. Schaff, Yoshiki Saito, and Yasushi Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett., vol. 80, pp. 3967-3969, 2002.
[2] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, Hai Lu, and William J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett., vol. 80, pp. 4741-4743, 2002.
[3] M. A. Khan, J. N. Kuznia, J. M. Van Hove, N. Pan, and J. Carter, “Observation of a twodimensional electron gas in low pressure metalorganic chemical vapor deposited GaN/AlxGa1−xN heterojunctions,” Appl. Phys. Lett., vol. 60, pp. 3027-3029, 1992.
[4] M. A. Khan, J. N. Kuznia, A. R. Bhattarai and D. T. Olson, “Metal semiconductor field effect transistor based on single crystal GaN,” Appl. Phys. Lett., vol. 62, pp. 1786–1787, 1993.
[5] J. B. Limb, H. Xing, B. Moran, L. McCarthy, S. P. DenBaars, and U. K. Mishra,“High voltage operation ( >80 V) of GaN bipolar junction transistors with low leakage,” Appl. Phys. Lett., vol. 76, pp. 2457-2459, 2000.
[6] L. S. McCarthy, P. Kozodoy, M. J. W. Rodwell, S. P. DenBaars and U. K. Mishra,“AlGaN/GaN heterojunction bipolar transistor,” IEEE Electron Device Lett., vol. 20, pp. 277–279, 1999.
[7] S. Geller, “Crystal Structure of β-Ga2O3,” J. Chem. Phys., vol. 33, pp. 676-684, 1960.
[8] T. Minami, “Oxide thin-film electroluminescent devices and materials,” Solid State Electron., vol. 47, pp, 2237-2243, 2003.
[9] T. Minami, “Transparent and conductive multicomponent oxide films prepared by magnetron sputtering,” J. Vac. Sci. Technol., vol. 17, pp, 1765-1772, 1999.
[10] K. Matsuzaki, H. Yanagi, T. Kamiya, H. Hiramatsu, K. Nomura, M. Hirano and H. Hosono, “Field-induced current modulation in epitaxial film of deep-ultraviolet transparent oxide semiconductor Ga2O3,” Appl. Phys. Lett., vol. 88, Art. no. 092106, 2006.
[11] M. Bartic, M. Ogita, M. Isai, C. L. Baban and H. Suzuki, “Oxygen sensing properties at high temperatures of beta-Ga2O3 thin films deposited by the chemical solution deposition method,” J. Appl. Phys., vol. 102, Art, no, 023709, 2007.
[12] M. R. Lorenz, J. F. Woods and R. J. Gambino, “Some electrical properties of the semiconductor β-Ga2O3,” J. Phys. Chem. Solids, vol. 28, pp. 403-404, 1967.
[13] Y. Kokubun, K. Miura, F. Endo and S. Nakagomi, “Sol-gel prepared β-Ga2O3 thin films for ultraviolet photodetectors,” Appl. Phys. Lett., vol. 90, Art, no, 031912, 2007.
[14] P. Feng, J. Y. Zhang, Q. H. Li and T. H. Wang, “Individual β-Ga2O3 nanowires as solar-blind photodetectors,” Appl. Phys. Lett., vol. 88, Art. no., 153107, 2006.
[15] T. Oshima, T. Okuno, N. Arai, N. Suzuki, S. Ohira and S. Fujita, “Vertical solar-blind deep-ultraviolet Schottky photodetectors based on beta-Ga2O3 substrate,” Appl. Phys. Express, vol. 1, Art. no. 011202, 2008.
[16] D. Gourier, E. Aubay and J. Guglielmi, “Magnetic bistability and Overhauser shift of conduction electrons in gallium oxide,” Phys. Rev. B, vol. 47, pp. 15023-15036, 1993.
[17] S. Iijima, “Helical Microtube of Graphitic Carbon,” Nature, vol. 354, pp. 56-58, 1991.
[18] J. M. Bao, M. A. Zimmler, F. Capasso, X. W. Wang, Z. F. Ren, “Broadband ZnO Single-Nanowire Light-Emitting Diode,” Nano Lett., vol. 6, pp. 1719-1722, 2006.
[19] Y. F. Lin and W. B. Jian, “The Impact of Nanocontact on Nanowire Based Nanoelectronics,” Nano Lett., vol. 8, pp. 3146-3150, 2008.
[20] M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo and P. D. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers,” Science, vol. 292, pp. 1897-1899, 2001.
[21] H. Kind, H. Q. Yan, B. Messer, M. Law, P. D. Yang, “Nanowire Ultraviolet Photodetectors and Optical Switches,” Adv. Mater., vol. 14, pp. 158-160, 2002.
[22] C. J. Collins, U. Chowdhury, M. M. Wong, B. Yang, A. L. Beck, R. D. Dupuis, and J. C. Campbell, “Improved solar-blind detectivity using an AlxGa1-xN heterojunction p-i-n photodiode,” Appl. Phys. Lett., vol. 80, pp. 3754–3756, 2002.
[23] W. Y. Weng, S. J. Chang, W. C. Lai, T. J. Hsueh, S. C. Shei, X. F. Zeng, S. L. Wu, and S. C. Hung, “GaN MSM Photodetectors With a Semi-Insulating Mg-Doped AlInN Cap Layer,” IEEE Photon. Technol. Lett., vol. 21, pp. 504-506, 2009.
[24] S. J. Chang, K. H. Lee, P. C. Chang, Y. C. Wang, C. L. Yu, C. H. Kuo, and S. L. Wu, “GaN-based Schottky-barrier photodetectors with a 12-pair MgxNy–GaN buffer layer,” IEEE J. Quan. Electron., vol. 44, pp. 916–921, 2008.
Reference in chapter 2
[1] R. S. Wagner, and W. C. Ellis “Vapor Liquid Solid Mechanism of Single Crystal Growth,” Appl. Phys. Lett., vol. 4, pp. 89-90, 1964.
[2] Y. Wu, P. Yang, “Direct Observation of Vapor-Liquid-Solid Nanowire Growth,” J. Am. Chem. Soc., vol. 123, pp. 3165-3166, 2001.
Reference in chapter 3
[1] S. Nakamura, M. Senoh, N. Iwasa and S. Nagahama, “High-power InGaN single-quantum-well-structure blue and violet light-emitting diodes,” Appl. Phys. Lett., vol. 67, pp. 1868-1870, 1995.
[2] S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu, and U. H. Liaw,“InGaN/GaN multiquantum well blue and green light emitting diodes,” IEEE J. Sel. Topics Quantum Electron., vol. 8, no. 2, pp. 278-283, 2002.
[3] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimuto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation- doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett., vol. 72, pp. 211-213, 1998.
[4] S. J. Chang, K. H. Lee, P. C. Chang, Y. C. Wang, C. H. Kuo and S. L. Wu, "AlGaN/GaN Schottky barrier photodetector with multi-MgxNy/GaN buffer," IEEE Sensors Journal, vol. 9, pp. 87-92, 2009.
[5] E. Monroy, E. Muňoz, F. J. Sánchez, F. Calley, E. Calleja, B. Beaumont, P. Gibart, J. A. Muňoz and F. Cussó, “High-performance GaN p-n junction photodetectors for solar ultraviolet applications,” Semicond. Sci. Technol., vol. 13, pp. 1042–1046, 1998.
[6] G. Y. Xu, A. Salvador, W. Kim, Z. Fan, C. Lu, H. Tang, H. Morkoç¸ G. Smith, M. Estes, B. Goldenberg, W. Yang and S. Krishnankutty, “High speed, low noise ultraviolet photodetectors based on GaN p-i-n and AlGaN(p)-GaN(i)-GaN(n) structures,” Appl. Phys. Lett., vol. 71, pp. 2154-2156, 1997.
[7] N. Biyikli, I. Kimukin, O. Aytur and E. Ozbay, “Solar-blind AlGaN-based p-i-n photodiodes with low dark current and high detectivity,” IEEE Photon. Technol. Lett., vol. 16, pp. 1718-1720, 2004.
[8] O. Katz, V. Garber, B. Meyler, G. Bahir and J. Salzman, “Anisotropy in detectivity of GaN Schottky ultraviolet detectors: Comparing lateral and vertical geometry,” Appl. Phys. Lett., vol. 80, pp. 347-349, 2002.
[9] T. Palacios, E. Monroy, F. Calle and F. Omnes, “High-responsivity submicron metal-semiconductor-metal ultraviolet detectors,” Appl. Phys. Lett., vol. 81, pp. 1902-1904, 2002.
[10] J. Li, Y. Xu, T. Y. Hsiang, and W. R. Donaldson, “Picosecond response of gallium-nitride metal-semiconductor-metal photodetectors,” Appl. Phys. Lett., vol. 84, pp. 2091-2093, 2004.
[11] S. J. Chang, Y. K. Su, Y. Z. Chiou, J. R. Chiou, B. R. Huang, C. S. Chang, and J. F. Chen, “Deposition of SiO2 layers on GaN by photochemical vapor deposition,” J. Electrochem. Soc., vol. 150, pp. C77-C80, 2003.
[12] L. W. Tu, W. C. Kuo, K. H. Lee, P. H. Tsao, C. M. Lai, A. K. Chu and J. K. Sheu, “High-dielectric-constant Ta2O5/n-GaN metal-oxide-semiconductor structure,” Appl. Phys. Lett., vol. 77, pp. 3788-3790, 2000.
[13] C. T. Lee, H. W. Chen and H. Y. Lee, “Metal-oxide-semiconductor devices using Ga2O3 dielectrics on n-type GaN,” Appl. Phys. Lett., vol. 82, pp. 4304-4306, 2003.
[14] C. Wang, N. Maeda, M. Hiroki, T. Kobayashi and T. Enoki, “High temperature characteristics of insulated-gate AlGaN/GaN heterostructure field-effect transistors with ultrathin Al2O3/Si3N4 bilayer,” Jpn. J. Appl. Phys., vol. 44, pp. 7889-7891, 2005.
[15] M. L. Lee, J. K. Sheu, W. C. Lai, Y. K. Su, S. J. Chang, C. J. Kao, C. J. Tun, M. G. Chen, W. H. Chang, G. C. Chi and J. M. Tsai, “Characterization of GaN Schottky barrier photodetectors with a low-temperature GaN cap layer,” J. Appl. Phys., vol. 94, pp. 1753-1757, 2003.
[16] S. J. Chang, C. L. Yu, P. C. Chang, Y. C. Lin and C. H. Chen, “Nitride-based MIS-like diodes with semi-insulating Mg-doped GaN cap layers,” Semicond. Sci. Technol., vol. 21, pp. 1422-1424, 2006.
[17] P. C. Chang, C. L. Yu, S. J. Chang, Y. C. Lin and S. L. Wu, "Low-noise and high-detectivity GaN UV photodiodes with a low-temperature AlN cap layer," IEEE Sensors Journal, vol. 7, pp. 1289-1292, 2007.
[18] R. Butte, J. F. Carlin, E. Feltin, M. Gonschorek, S. Nicolay, G. Christmann, D. Simeonov, A. Castiglia, J. Dorsaz, H. J. Buehlmann, S. Christopoulos, G. B. H. von Hoegersthal, A. J. D. Grundy, M. Mosca, C. Pinquier, M. A. Py, F. Demangeot, J. Frandon, P. G. Lagoudakis, J. J. Baumberg and N. Grandjean, "Current status of AlInN layers lattice-matched to GaN for photonics and electronics," J. Phys. D, vol. 40, pp. 6328-6344, 2007.
[19] M. L. Lee, J. K. Sheu and C. C. Hu, “Nonalloyed Cr/Au-based Ohmic contacts to n-GaN,” Appl. Phys. Lett., vol. 91, Art. no. 182106, 2007.
[20] S. Schmult, T. Siegrist, A. M. Sergent and M. J. Manfra, “Optimized growth of lattice-matched InxAl1-xN/GaN heterostructures by molecular beam epitaxy,” Appl. Phys. Lett., vol. 90, Art. no. 021922, 2007.
[21] A. Billeb, W. Grieshaber, D. Stocker, E. F. Schubert and F. Karlicek, “Microcavity effects in GaN epitaxial films and in Ag/GaN/sapphire structures,” Appl. Phys. Lett., vol. 70, pp. 2790-2792, 1997.
[22] J. A. Garrido, E. Monroy, I. Izpura and E. Munoz, “Photoconductive gain modelling of GaN photodetectors,” Semicond. Sci. Technol., vol. 13, pp. 563-568, 1998.
[23] J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis and J. C. Campbell, "Comprehensive characterization of metal-semiconductor-metal ultraviolet photodetectors fabricated on single-crystal GaN," J. Appl. Phys., vol. 83, pp. 6148-6160, 1998.
[24] D. V. Kuksenkov, H. Temkin, A. Osinsky, R. Gaska and M. A. Khan, “Low-frequency noise and performance of GaN p-n junction photodetectors,” IEDM Technical Digest, pp. 759-762, 1997.
[25] T. Mukai, K. Takekawa and S. Nakamura, “InGaN-based blue light-emitting diodes grown on epitaxially laterally overgrown GaN substrates,” Jpn. J. Appl. Phys., vol. 37, pp. L839-L841, 1998.
[26] A. Usui, H. Sunakawa, A. Sakai and A. A. Yamaguchi, “Thick GaN epitaxial growth with low dislocation density by hydride vapor phase epitaxy,” Jpn. J. Appl. Phys., vol. 36, L899-L902, 1997.
[27] S. Nakamura, “GaN growth using GaN buffer layer,” Jpn. J. Appl. Phys., vol. 30, pp. L1705-L1707, 1991.
[28] E. D. Bourret-Courchesne, S. Kellermann, K. M. Yu, M. Benamara, Z. Liliental-Weber, J. Washburn, S. J. C. Irvine and A. Stafford, “Reduction of threading dislocation density in GaN using an intermediate temperature interlayer,” Appl. Phys. Lett., vol. 77, pp. 3562-3564, 2000.
[29] M. Iwaya, T. Takeuchi, S. Yamaguchi, C. Wetzel, H. Amano and I Akasaki, “Reduction of etch pit density in organometallic vapor phase epitaxy-grown GaN on sapphire by insertion of a low-temperature-deposited buffer layer between high temperature-grown GaN,” Jpn. J. Appl. Phys., vol. 37, pp. L316-L318, 1998.
[30] Z. Bougrioua, I. Moerman, L. Nistor, B. Van Daele, E. Monroy, T. Palacios, F. Calle and M. Leroux “Engineering of an insulating buffer and use of AIN interlayers: two optimisations for AIGaN/GaN HEMT-like structures,” Physica Status Solidi, vol. 195, pp. 93-100, 2003.
[31] J. C. Lin, Y. K. Su, S. J. Chang, W. H. Lan, K. C. Huang, W. R. Chen, C. C. Huang, W. J. Lin, Y. C. Cheng and C. M. Chang, “GaN p-i-n photodetectors with an LT-GaN interlayer,” IET Optoelectron., vol. 2, pp. 59-62, 2008.
[32] K. H. Lee, P. C. Chang, S. J. Chang, Y. C. Wang, C. L. Yu, and S. L. Wu, “AlGaN/GaN Schottky barrier UV photodetectors with a GaN sandwich layer,” IEEE Sensors J., vol. 9, pp. 814-819, 2009.
[33] K. H. Lee, P. C. Chang, S. J. Chang, Y. K. Su, Y. C. Wang, C. L. Yu and S. L. Wu, “Al0.25Ga0.75N/GaN Schottky barrier photodetectors with an Al0.3Ga0.7N intermediate layer,” J. Electrochem. Soc., vol. 156, pp. J199-J202, 2009.
[34] S. K. Hong, T. Yao, B. J. Kim, S. Y. Yoon and T. I. Kim, “Origin of hexagonal-shaped etch pits formed in (0001) GaN films,” Appl. Phys. Lett., vol. 77, pp. 82-84, 2000.
[35] J. H. You and H. T. Johnson, “Effect of screw dislocation density on optical properties in n-type wurtzite GaN,” J. Appl. Phys., vol. 101, Art. no. 023516, 2007.
[36] E. Muñoz, E. Monroy, J. A. Garrido, I. Izpura, F. J. Sánchez, M. A. Sánchez-García, E. Calleja, B. Beaumont and P. Gibart, “Photoconductor gain mechanisms in GaN ultraviolet detectors,” IEEE J. Sel. Top. Quantum Electron., vol. 71, pp. 870-872, 1997.
[37] O. Katz, V. Garber, B. Meyler, G. Bahir and J. Salzman, “Gain mechanism in GaN Schottky ultraviolet detectors,” Appl. Phys. Lett., vol. 79, pp. 1417-1419, 2001.
[38] S. Wang, T. Li, J. M. Reifsnider, B. Yang, C. Collins, A. L. Holmes, Jr. and J. C. Campbell, “Schottky metal-semiconductor-metal photodetectors on GaN films grown on sapphire by molecular beam epitaxy,” IEEE J. Quan. Electron., vol. 36, pp. 1262-1266, 2000.
[39] E. Ozbay, N. Biyikli, I. Kimukin, T. Kartaloglu, T. Tut and O. Aytur,“High-performance solar-blind photodetectors based on AlxGa1-xN heterostructures,” IEEE J. Sel. Top. Quan. Electron., vol. 10, pp. 742-751, 2004.
Reference in chapter 4
[1] M. Bartic, M. Ogita, M. Isai, C. L. Baban and H. Suzuki, “Oxygen sensing properties at high temperatures of beta-Ga2O3 thin films deposited by the chemical solution deposition method,” J. Appl. Phys., vol. 102, Art, no, 023709, 2007.
[2] T. Minami, “Oxide thin-film electroluminescent devices and materials,” Solid State Electron., vol. 47, pp, 2237-2243, 2003.
[3] T. Minami, “Transparent and conductive multicomponent oxide films prepared by magnetron sputtering,” J. Vac. Sci. Technol., vol. 17, pp, 1765-1772, 1999.
[4] K. Matsuzaki, H. Yanagi, T. Kamiya, H. Hiramatsu, K. Nomura, M. Hirano and H. Hosono, “Field-induced current modulation in epitaxial film of deep-ultraviolet transparent oxide semiconductor Ga2O3,” Appl. Phys. Lett., vol. 88, Art. no. 092106, 2006.
[5] Y. Kokubun, K. Miura, F. Endo and S. Nakagomi, “Sol-gel prepared β-Ga2O3 thin films for ultraviolet photodetectors,” Appl. Phys. Lett., vol. 90, Art. no. 031912, 2007.
[6] P. Feng, J. Y. Zhang, Q. H. Li and T. H. Wang, “Individual β-Ga2O3 nanowires as solar-blind photodetectors,” Appl. Phys. Lett., vol. 88, Art. no. 153107, 2006.
[7] T. Oshima, T. Okuno, N. Arai, N. Suzuki, S. Ohira and S. Fujita, “Vertical solar-blind deep-ultraviolet Schottky photodetectors based on beta-Ga2O3 substrate,” Appl. Phys. Express, vol. 1, Art. no. 011202, 2008.
[8] T. Oshima, T. Okuno and S. Fujita, “Ga2O3 thin film growth on c-plane sapphire substrates by molecular beam epitaxy for deep-ultraviolet photodetectors,” Jpn. J. Appl. Phys., vol. 46, pp. 7217-7220, 2007.
[9] K. Matsuzaki, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano and H. Hosono, “Growth, structure and carrier transport properties of Ga2O3 epitaxial film examined for transparent field-effect transistor,” Thin Solid Films, vol. 496, pp. 37-41, 2006.
[10] C. L. Dezelah, IV, J. Niinisto, K. Arstila, L. Niinisto and C. H. Winter, “Atomic layer deposition of Ga2O3 films from a dialkylamido-based precursor,” Chem. Mater., vol. 18, pp. 471-475, 2006.
[11] H. W. Kim and N. H. Kim, “Growth of gallium oxide thin films on silicon by the metal organic chemical vapor deposition method,” Mater. Sci. Eng. B, vol. 110, pp. 34-37, 2004.
[12] Y. Li, A. Trinchi, W. Wlodarski, K. Galatsis and K. Kalantar-zadeh, “Investigation of the oxygen gas sensing performance of Ga2O3 thin films with different dopants,” Sens. Actuators B, vol. 93, pp. 431-434, 2003.
[13] A. C. Lang, M. Fleischer and H. Meixner, “Surface modification of Ga2O3 thin film sensors with Rh, Ru and Ir clusters,” Sens. Actuators B, vol. 66, pp. 80-84, 2000.
[14] C. T. Lee, H. W. Chen, F. T. Hwang and H. Y. Lee, “Investigation of Ga oxide films directly grown on n-type GaN by photoelectrochemical oxidation using He-Cd laser,” J. Electron. Mater., vol. 34, pp. 282-286, 2005.
[15] C. T. Lee, H. W. Chen and H. Y. Lee, “Metal-oxide-semiconductor devices using Ga2O3 dielectrics on n-type GaN,” Appl. Phys. Lett., vol. 82, pp. 4304-4306, 2003.
[16] S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen, and J. M. Tsai, “400-nm InGaN-GaN and InGaN-AlGaN multiquantum well light-emitting diodes,” IEEE J. Sel. Top. Quan. Electron., vol. 8, pp. 744-748, 2002.
[17] S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu, and U. H. Liaw, “InGaN-GaN multiquantum-well blue and green light-emitting diodes,” IEEE J. Sel. Top. Quan. Electron. vol. 8, pp. 278-283, 2002.
[18] O. Ambacher, M. S. Brandt, R. Dimitrov, T. Metzger, M. Stutzmann, R. A. Fischer, A. Miehr, A. Bergmaier and G. Dollinger, “Thermal stability and desorption of Group III nitrides prepared by metal organic chemical vapor deposition,” J. Vac. Sci. Technol. B, vol. 14, pp. 3532-3542, 1996.
[19] J. A. Garrido, E. Monroy, I. Izpura and E. Munoz, “Photoconductive gain modelling of GaN photoconductors,” Semicond. Sci. Technol., vol. 13, pp. 563-568, 1998.
[20] J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis and J. C. Campbell, “Comprehensive characterization of metal-semiconductor-metal ultraviolet photodetectors fabricated on single-crystal GaN,” J. Appl. Phys., vol. 83, pp. 6148-6260, 1998.
[21] Z. Hajnal, J. Miro, G. Kiss, F. Reti, P. Deak, R. C. Herndon and J. M. Kuperberg, “Role of oxygen vacancy defect states in the n-type conduction of beta-Ga2O3,” J. Appl. Phys., vol. 86, pp. 3792-3796, 1999.
[22] J. M. Wu and C. H. Kuo, “Ultraviolet photodetectors made from SnO2 nanowires,” Thin Solid Films, vol. 517, pp. 3870-3873, 2009.
[23] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett., vol. 7, pp. 1003-1009, 2007.
[24] P. Feng, X. Y. Xue, Y. G. Liu, Q. Wan, and T. H. Wang, “Achieving fast oxygen response in individual β-Ga2O3 nanowires by ultraviolet illumination,” Appl. Phys. Lett., vol. 89, Art. no. 112114. 2006.
[25] C. J. Collins, U. Chowdhury, M. M. Wong, B. Yang, A. L. Beck, R. D. Dupuis, and J. C. Campbell, “Improved solar-blind detectivity using an AlxGa1-xN heterojunction p-i-n photodiode,” Appl. Phys. Lett., vol. 80, pp. 3754–3756, 2002.
[26] W. Y. Weng, S. J. Chang, W. C. Lai, T. J. Hsueh, S. C. Shei, X. F. Zeng, S. L. Wu, and S. C. Hung, “GaN MSM Photodetectors With a Semi-Insulating Mg-Doped AlInN Cap Layer,” IEEE Photon. Technol. Lett., vol. 21, pp. 504-506, 2009.
[27] S. J. Chang, K. H. Lee, P. C. Chang, Y. C. Wang, C. L. Yu, C. H. Kuo, and S. L. Wu, “GaN-based Schottky-barrier photodetectors with a 12-pair MgxNy–GaN buffer layer,” IEEE J. Quan. Electron., vol. 44, no. 10, pp. 916–921, 2008.
[28] I. S. Seoa, I. H. Lee, Y. J. Park, C. R. Lee, “Characteristics of UV photodetector fabricated by Al0.3Ga0.7N/GaN heterostructure,” J. Crystal Growth, vol. 252, pp. 51–57, 2003.
[29] A. BenMoussa, J. F. Hochedez, U. Schuehle, W. Schmutz, K. Haenen, Y. Stockman, A. Soltani, F. Scholze, U. Kroth, V. Mortet, A. Theissen, C. Laubis, M. Richter, S. Koller, J. M. Defise and S. Koizumi, “Diamond detectors for LYRA, the solar VUV radiometer on board PROBA2,” Diamond Relat. Mater., vol. 15, pp. 802-806, 2006.
[30] K. Hayashi, T. Tachibana, N. Kawakami, Y. Yokota, K. Kobashi, H. Ishihara, K. Uchida, K. Nippashi and M. Matsuoka, “Diamond sensors durable for continuously monitoring intense vacuum ultraviolet radiation,” Jpn. J. Appl. Phys., vol. 44, pp. 7301-7304, 2005.
[31] I. Vurgaftman, J. R. Meyer and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys., vol. 89, pp. 5815-5875, 2001.
Reference in chapter 5
[1] M. Fleischer, L. Höllbauer and H. Meixner, “Effect of the sensor structure on the stability of Ga2O3 sensors for reducing gases,” Sens. Actuators B, vol. 18, pp. 119-124, 1994.
[2] T. Minami, H. Yamada, Y. Kubota and T. Miyata, “Mn-Activated CaO-Ga2O3 phosphors for thin-film electroluminescent devices,” Jpn. J. Appl. Phys., Part 2, vol. 36, pp. L1191-L1194, 1997.
[3] N. Ueda, H. Hosono, R. Waseda and H. Kawazoe, “Synthesis and control of conductivity of ultraviolet transmitting β-Ga2O3 single crystals,” Appl. Phys. Lett., vol. 70, pp. 3561-3562, 1997.
[4] K. Matsuzaki, H. Yanagi, T. Kamiya, H. Hiramatsu, K. Nomura, M. Hirano and H. Hosono, “Field-induced current modulation in epitaxial film of deep-ultraviolet transparent oxide semiconductor Ga2O3,” Appl. Phys. Lett., vol. 88, Article 092106, 2006.
[5] R. Suzuki, S. Nakagomi, Y. Kokubun, N. Arai and S. Ohira, “Enhancement of responsivity in solar-blind beta-Ga2O3 photodiodes with a Au Schottky contact fabricated on single crystal substrates by annealing,” Appl. Phys. Lett., vol. 94, Article 222102, 2009.
[6] T. Oshima, T. Okuno, N. Arai, N. Suzuki, S. Ohira and S. Fujita, “Vertical solar-blind deep-ultraviolet schottky photodetectors based on beta-Ga2O3 substrates,” Appl. Phys. Express, vol. 1, Art. no. 011202, 2008.
[7] T. Oshima, T. Okuno and S. Fujita, “Ga2O3 thin film growth on c-plane sapphire substrates by molecular beam epitaxy for deep-ultraviolet photodetectors,” Jpn. J. Appl. Phys., vol. 46, pp. 7217-7220, 2007.
[8] Y. Kokubun, K. Miura, F. Endo and S. Nakagomi, “Sol-gel prepared beta-Ga2O3 thin films for ultraviolet photodetectors,” Appl. Phys. Lett., vol. 90, Art. no. 031912, 2007.
[9] S. J. Chang, K. H. Lee, P. C. Chang, Y. C. Wang, C. L. Yu, C. H. Kuo, and S. L. Wu, “GaN-based Schottky barrier photodetectors with a 12-pair MgxNy-GaN buffer layer,” IEEE J. Quan. Electron., vol. 44, pp. 916-921, 2008.
[10] J. Pereiro, C. Rivera, A. Navarro, E. Munoz, R. Czernecki, S. Grzanka, and M. Leszczynski, “Optimization of InGaN-GaN MQW photodetector structures for high-responsivity performance,” IEEE J. Quan. Electron., vol. 45, pp. 617-622, 2009.
[11] T. Li, D. J. H. Lambert, M. M. Wong, C. J. Collins, B. Yang, A. L. Beck, U. Chowdhury, R. D. Durpuis and J. C. Campbell, “Low-noise back-illuminated AlxGa1-xN-based p-i-n solar-blind ultraviolet photodetectors,” IEEE J. Quan. Electron., vol. 37, pp. 538-545, 2001.
[12] Z. R. Dai, Z. W. Pan and Z. L. Wang, ”Novel nanostructures of functional oxides synthesized by thermal evaporation,” Adv. Funct. Mater., vol. 13, pp. 9-24, 2003.
[13] Y. Q. Zhu, W. B. Hu, W. K. Hsu, M. Terrones, N. Grobert, J. P. Hare, H. W. Kroto, D. R. M. Walton and H. Terrones, “Generation of hollow crystalline tungsten oxide fibres,” Appl. Phys. A: Materials Science and Processing, vol. 70, pp 231-233, 2000.
[14] Z. G. Bai, D. P. Yu, H. Z. Zhang, Y. Ding, X. Z. Gai, Q. L. Hang, G. C. Xiong and S. Q. Feng,” Nano-scale GeO2 wires synthesized by physical evaporation,” Chem. Phys. Lett., vol. 303, pp 311-314, 1999.
[15] Z. W. Pan, Z. R. Dai and Z. L. Wang, “Nanobelts of semiconducting oxides,” Science, vol. 291, pp 1947-1949, 2001.
[16] J. J. Wu and S. C. Liu, “Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition,” Adv. Mater., vol. 14, pp. 215-218, 2002.
[17] H. Yumoto, T. Sako, Y. Gotoh, K. Nishiyama and T. Kaneko, “Growth mechanism of vapor-liquid-solid (VLS) grown indium tin oxide (ITO) whiskers along the substrate,” J. Crystal Growth, vol. 203, pp. 136-140, 1999.
[18] V. Valcarcel, A. Souto and F. Guitian, “Development of single-crystal α-Al2O3 fibers by vapor-liquid-solid deposition (VLS) from aluminum and powdered silica,” Adv. Mater., vol. 10, pp. 138-140, 1999.
[19] T. Y. Zhai, X. S. Fang, M. Y. Liao, X. J. Xu, H. B. Zeng, B. Yoshio and D. Golberg, “A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors,” Sensors, vol. 9, pp. 6504-6529, 2009.
[20] P. Feng, J. Y. Zhang, Q. H. Li and T. H. Wang, “Individual β-Ga2O3 nanowires as solar-blind photodetectors,” Appl. Phys. Lett., vol. 88, Art. no. 153107, 2006.
[21] S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen and J. M. Tsai, “400-nm InGaN-GaN and InGaN-AlGaN multiquantum well light-emitting diodes,” IEEE J. Sel. Top. Quan. Electron., vol. 8, pp. 744-748, 2002.
[22] S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu and U. H. Liaw, “InGaN-GaN multiquantum-well blue and green light-emitting diodes,” IEEE J. Sel. Top. Quan. Electron., vol. 8, pp. 278-283, 2002.
[23] M. Paulose, O. K. Varghese and C. A. Grimes, “Synthesis of gold-silica composite nanowires through solid-liquid-solid phase growth,” J. Nanoscience Nanotechnol., vol. 3, pp. 341-346, 2003.
[24] O. Ambacher, M. S. Brandt, R. Dimitrov, T. Metzger, M. Stutzmann, R. A. Fischer, A. Miehr, A. Bergmaier and G. Dollinger, “Thermal stability and desorption of Group III nitrides prepared by metal organic chemical vapor deposition,” J. Vac. Sci. Technol. B, vol. 14, pp. 3532-3542, 1996.
[25] J. A. Garrido, E. Monroy, I. Izpura and E. Munoz, “Photoconductive gain modelling of GaN photodetectors,” Semicond. Sci. Technol., vol. 13, pp. 563-568, 1998.
[26] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett., vol. 7, pp. 1003-1009, 2007.
[27] C. H. Lin, R. S. Chen, T. T. Chen, H. Y. Chen, Y. F. Chen, K. H. Chen and L. C. Chen, “High photocurrent gain in SnO2 nanowires,” Appl. Phys. Lett., vol. 93, Article 112115, 2008.
[28] P. Feng, X. Y. Xue, Y. G. Liu, Q. Wan, and T. H. Wang, “Achieving fast oxygen response in individual β-Ga2O3 nanowires by ultraviolet illumination,” Appl. Phys. Lett., vol. 89, Article 112114, 2006.
[29] F. N. Hooge, J. Kedzia, and L. K. J. Vandamme, “Boundary scattering and 1/f noise,” J. Appl. Phys., vol. 50, pp. 8087-8089, 1979.
[30] A. Bid, A. Bora, and A. K. Raychaudhuri, “1/f noise in nanowires,” Nanotechnol., vol. 17, pp. 152–156, 2006.
[31] P. Dutta and P. M. Horn, “Low-frequency fluctuations in solids: 1/f noise,” Rev. Mod. Phys., vol. 53, pp. 497–516, 1981.
[32] R. S. Chen, S. W. Wang, Z. H. Lan, J. T. Tsai, C. T. Wu, L. C. Chen, K. H. Chen, Y. S. Huang and C. C. Chen, “On-Chip Fabrication of Well-Aligned and Contact-Barrier-Free GaN Nanobridge Devices with Ultrahigh Photocurrent Responsivity,” Small, vol. 4, pp. 925–929, 2008.
[33] W. Y. Weng, S. J. Chang, C. L. Hsu, T. J. Hsueh and S. P. Chang, “A Lateral ZnO Nanowire Photodetector Prepared on Glass Substrate,” J. Electrochem. Soc., vol. 157, pp. K30–33, 2010.
[34] C. Rivera, J. L. Pau, A. Navarro and E. Munoz, “Photoresponse of (In,Ga)N-GaN multiple-quantum-well structures in the visible and UVA ranges,” IEEE J. Quan. Electron., vol. 42, pp. 51-58, 2006.
[35] G. Y. Xu, A. Salvador, W. Kim, Z. Fan, C. Lu, H. Tang, H. Morkoç¸ G. Smith, M. Estes, B. Goldenberg, W. Yang and S. Krishnankutty, “High speed, low noise ultraviolet PDs based on GaN p-i-n and AlGaN(p)-GaN(i)-GaN(n) structures,” Appl. Phys. Lett., vol. 71, pp. 2154-2156, 1997
[36] N. Biyikli, I. Kimukin, O. Aytur and E. Ozbay, “Solar-blind AlGaN-based p-i-n photodiodes with low dark current and high detectivity,” IEEE Photon. Technol. Lett., vol. 16, pp. 1718-1720, 2004
[37] O. Katz, V. Garber, B. Meyler, G. Bahir and J. Salzman, “Anisotropy in detectivity of GaN Schottky ultraviolet detectors: Comparing lateral and vertical geometry,” Appl. Phys. Lett., vol. 80, pp. 347-349, 2002
[38] J. Li, Y. Xu, T. Y. Hsiang, and W. R. Donaldson, “Picosecond response of gallium-nitride metal-semiconductor-metal PDs,” Appl. Phys. Lett., vol. 84, pp. 2091-2093, 2004
[39] V. Gottschalch, G. Wagner, J. Bauer, H. Paetzelt and M. Shirnow, “VLS growth of GaN NWs on various substrates,” J. Crystal Growth, vol. 310, pp. 5123-5128, 2008.
[40] S. D. Hersee, X. Y. Sun and X. Wang, “The controlled growth of GaN NWs,” Nano Lett., vol. 6, pp. 1808-1811, 2006.
[41] C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng and Y. F. Chen, “Catalytic growth and characterization of gallium nitride NWs.” J. Am. Chem. Soc., vol. 123, pp. 2791-2798, 2001.
[42] H. Y. Peng, X. T. Zhou, N. Wang, Y. F. Zheng, L. S. Liao, W. S. Shi, C. S. Lee and S. T. Lee, “Bulk-quantity GaN NWs synthesized from hot filament chemical vapor deposition,” Chem. Phys. Lett., vol. 327, pp. 263-270, 2000.
[43] Y. Wu, C. Xue, H. Zhuang, D. Tian, Y. Liu, J. He, L. Sun, F. Wang, Y. Ai and Y. Cao, “Synthesis of GaN nanorods through ammoniating Ga2O3/BN thin films deposited by RF magnetron sputtering,” J. Crystal Growth, vol. 292, pp. 294-297, 2006.
[44] L. W. Ji, S. M. Peng, Y. K. Su, S. J. Young, C. Z. Wu and W. B. Cheng, “Ultraviolet photodetectors based on selectively grown ZnO nanorod arrays,” Appl. Phys. Lett., vol. 94, Art. no. 203106, 2009.
[45] R. S. Chen, C. Y. Lu, K. H. Chen and L. C. Chen, “Molecule-modulated photoconductivity and gain-amplified selective gas sensing in polar GaN NWs,” Appl. Phys. Lett., vol. 95, Art. no. 233119, 2009.
[46] M. Kang, J. S. Lee, S. K. Kim, B. Min, K. Cho, G. T. Kim, M. Y. Sung, S. Kim and H. S. Han, “Photocurrent and photoluminescence characteristics of networked GaN NWs,” Jpn. J. Appl. Phys., vol. 43, pp. 6868-6872, 2004.
[47] C. M. Balkas and R. F. Davis, “Synthesis routes and characterization of high-purity, single-phase gallium nitride powders,” J. Am. Ceram. Soc., vol. 79, pp. 2309-2312, 1996.
[48] Z. H. Lan, C. H. Liang, C. W. Hsu, C. T. Wu, H. M. Lin, S. Dhara, K. H. Chen, L. C. Chen and C. C. Chen, “Nanohomojunction (GaN) and nanoheterojunction (InN) nanorods on one-dimensional GaN nanowire substrate,” Adv. Funct. Mater., vol. 14, pp. 233-237, 2004.
[49] Y. W. Heo, B. S. Kang, L. C. Tien, D. P. Norton, F. Ren, J. R. La Roche and S. J. Pearton, “UV photoresponse of single ZnO nanowires,” Appl. Phys. A, vol. 80, pp. 497-499, 2005.
[50] R. S. Chen, H. Y. Chen, C. Y. Lu, K. H. Chen, C. P. Chen, L. C. Chen, and Y. J. Yang, “Ultrahigh photoconductive gain in m-axial GaN nanowires,” Appl. Phys. Lett., vol. 91, Art. no. 223106, 2007.
[51] S. Wang, T. Li, J. M. Reifsnider, B. Yang, C. Collins, A. L. Holmes, Jr. and J. C. Campbell, “Schottky metal-semiconductor-metal photodetectors on GaN films grown on sapphire by molecular beam epitaxy,” IEEE J. Quan. Electron., vol. 36, pp. 1262-1266, 2000.
[52] E. Ozbay, N. Biyikli, I. Kimukin, T. Kartaloglu, T. Tut and O. Aytur, “High-performance solar-blind photodetectors based on AlxGa1-xN heterostructures,” IEEE J. Sel. Top. Quan. Electron., vol. 10, pp. 742-751, 2004.
[53] Y. W. Chang and Y. T. Huang, “The ring-shaped CMOS-based phototransistor with high responsivity for the UV/Blue spectral range,” IEEE Photon. Technol. Lett., vol. 21, pp. 899-901, 2009.